33 research outputs found

    Waste PET Plastic-Derived CoNi-Based Metal–Organic Framework as an Anode for Lithium-Ion Batteries

    No full text
    Recycling waste PET plastics into metal–organic frameworks is conducive to both pollution alleviation and sustainable economic development. Herein, we have utilized waste PET plastic to synthesize CoNi-MOF applied to lithium battery anode materials via a low-temperature solvothermal method for the first time. The preparation process is effortless, and the sources’ conversion rate can reach almost 100%. In addition, the anode performance of MOFs with various Co/Ni mole ratios was investigated. The as-synthesized Co0.8Ni-MOF exhibits excellent crystallinity, purity, and electrochemical performance. The initial discharge and charge capacities are 2496 and 1729 mAh g–1, respectively. Even after 200 cycles, the Co0.8Ni-MOF electrode can exhibit a high Coulombic efficiency of over 99%. Consequently, given the environmental and economic benefits, the Co0.8Ni-MOF derived from waste PET plastic is thought to be an appealing anode material for lithium-ion batteries

    Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A Photochemical Protocol for Perfluoroalkylation Reactions

    No full text
    A new protocol for photochemical perfluoroalkylation reactions using perfluoroalkyl iodide, amine additive, and THF solvent is reported. This protocol does not require a photoredox catalyst and proceeds at ambient temperature with irradiation from a compact fluorescent lamp, low-intensity UV lamp, or sunlight. This protocol can be applied to the synthesis of perfluoroalkyl-substituted phenanthridines as well as effect the iodo-perfluoroalkylation of alkenes/alkynes and the C–H perfluoroalkylation of electron-rich arenes and heteroarenes. This C–H perfluoroalkylation reaction offers a unique method for site-selective labeling of oligopeptides at the tryptophan residue

    Radical Cation Salt-Promoted Catalytic Aerobic sp<sup>3</sup> C–H Oxidation: Construction of Quinoline-Fused Lactones and Lactams

    No full text
    A direct construction of quinoline-fused lactones and lactams was achieved by sp<sup>3</sup> C–H bond oxidation of <i>N</i>-aryl glycine esters and amides under catalytic radical cation salt-induced conditions. These polycyclic products are formed in a single step from readily accessible starting materials, and this method provides a new synthetic approach to this class of heterocycles

    Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors

    No full text
    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively

    Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors

    No full text
    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively

    Catalytic sp<sup>3</sup> C–H Oxidation of Peptides and Their Analogues by Radical Cation Salts: From Glycine Amides to Quinolines

    No full text
    A catalytic α-sp<sup>3</sup> C–H oxidation of peptides and glycine amides was achieved under radical cation salt catalysis in the presence of O<sub>2</sub>, producing a series of substituted quinolines. The scope of this reaction shows good functional group tolerance and high efficiency of the oxidative functionalization

    Catalytic sp<sup>3</sup> C–H Oxidation of Peptides and Their Analogues by Radical Cation Salts: From Glycine Amides to Quinolines

    No full text
    A catalytic α-sp<sup>3</sup> C–H oxidation of peptides and glycine amides was achieved under radical cation salt catalysis in the presence of O<sub>2</sub>, producing a series of substituted quinolines. The scope of this reaction shows good functional group tolerance and high efficiency of the oxidative functionalization

    Table_1_Genome-Wide Analysis of β-Galactosidases in Xanthomonas campestris pv. campestris 8004.pdf

    No full text
    <p>Bacterial β-galactosidase is involved in lactose metabolism and acts as a prevalent reporter enzyme used in studying the activities of prokaryotic and eukaryotic promoters. Xanthomonas campestris pv. campestris (Xcc) is the pathogen of black rot disease in crucifers. β-Galactosidase activity can be detected in Xcc culture, which makes Escherichia coli LacZ unable to be used as a reporter enzyme in Xcc. To systemically understand the β-galactosidase in Xcc and construct a β-galactosidase -deficient strain for promoter activity analysis using LacZ as a reporter, we here analyzed the putative β-galactosidases in Xcc 8004. As glycosyl hydrolase (GH) family 2 (GH2) and 35 (GH35) family enzymes were reported to have beta-galactosidase activities, we studied all of them encoded by Xcc 8004. When expressed in E. coli, only two of the enzymes, XC1214 and XC2985, were found to have β-galactosidase activity. When deleted from the Xcc 8004 genome, only the XC1214 mutant had no β-galactosidase activity, and other GH2 and GH35 gene deletions resulted in no significant reduction in β-galactosidase activity. Therefore, XC1214 is the main β-galactosidase in Xcc 8004. Notably, we have constructed a β-galactosidase-free strain that can be employed in gene traps using LacZ as a reporter in Xcc. The results reported herein should facilitate the development of high-capacity screening assays that utilize the LacZ reporter system in Xcc.</p

    Image_1_Genome-Wide Analysis of β-Galactosidases in Xanthomonas campestris pv. campestris 8004.pdf

    No full text
    <p>Bacterial β-galactosidase is involved in lactose metabolism and acts as a prevalent reporter enzyme used in studying the activities of prokaryotic and eukaryotic promoters. Xanthomonas campestris pv. campestris (Xcc) is the pathogen of black rot disease in crucifers. β-Galactosidase activity can be detected in Xcc culture, which makes Escherichia coli LacZ unable to be used as a reporter enzyme in Xcc. To systemically understand the β-galactosidase in Xcc and construct a β-galactosidase -deficient strain for promoter activity analysis using LacZ as a reporter, we here analyzed the putative β-galactosidases in Xcc 8004. As glycosyl hydrolase (GH) family 2 (GH2) and 35 (GH35) family enzymes were reported to have beta-galactosidase activities, we studied all of them encoded by Xcc 8004. When expressed in E. coli, only two of the enzymes, XC1214 and XC2985, were found to have β-galactosidase activity. When deleted from the Xcc 8004 genome, only the XC1214 mutant had no β-galactosidase activity, and other GH2 and GH35 gene deletions resulted in no significant reduction in β-galactosidase activity. Therefore, XC1214 is the main β-galactosidase in Xcc 8004. Notably, we have constructed a β-galactosidase-free strain that can be employed in gene traps using LacZ as a reporter in Xcc. The results reported herein should facilitate the development of high-capacity screening assays that utilize the LacZ reporter system in Xcc.</p
    corecore