16,834 research outputs found
Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra
We analyze the structure of the family of quadratic superalgebras, introduced
in J Phys A 44(23):235205 (2011), for the quadatic deformations of
space-time conformal supersymmetry. We characterize in particular the
`zero-step' modules for this case. In such modules, the odd generators vanish
identically, and the quadratic superalgebra is realized on a single irreducible
representation of the even subalgebra (which is a Lie algebra). In the case
under study, the quadratic deformations of space-time conformal
supersymmetry, it is shown that each massless positive energy unitary
irreducible representation (in the standard classification of Mack), forms such
a zero-step module, for an appropriate parameter choice amongst the quadratic
family (with vanishing central charge). For these massless particle multiplets
therefore, quadratic supersymmetry is unbroken, in that the supersymmetry
generators annihilate \emph{all} physical states (including the vacuum state),
while at the same time, superpartners do not exist.Comment: 25 pages, Latex; corrected typos, minor clarification of degeneracy
condition
The generation of a Gaussian random process in a position parameter
Analog computer method for approximating stationary Gaussian random process depending only on position paramete
The determination of the topological structure of skin friction lines on a rectangular wing-body combination
A short tutorial in the application of topological ideas to the intepretation of oil flow patterns is presented. Topological concepts such as critical points, phase portraits, topological stability, and indexing are discussed. These concepts are used in an ordered procedure to construct phase portraits of skin friction lines with oil flow patterns for a wing-body combination and two angles of attack. The relationship between the skin friction phase portrait and planar cuts of the velocity field is also discussed
A simulation model of time-dependent plasma-spacecraft interactions
A plasma simulation code is presented that models the time-dependent plasma properties in the vicinity of a spherical, charged spacecraft. After showing agreement with analytic, steady-state theories and ATS-6 satellite data, the following three problems are treated: (1) transient pulses from photoemission at various emission temperatures and ambient plasma conditions, (2) spacecharge limited emission, and (3) simulated plasma oscillations in the long wavelength limit
One-degree-of-freedom motion induced by modeled vortex shedding
The motion of an elastically supported cylinder forced by a nonlinear, quasi-static, aerodynamic model with the unusual feature of a motion-dependent forcing frequency was studied. Numerical solutions for the motion and the Lyapunov exponents are presented for three forcing amplitudes and two frequencies (1.0 and 1.1 times the Strouhal frequency). Initially, positive Lyapunov exponents occur and the motion can appear chaotic. After thousands of characteristic times, the motion changes to a motion (verified analytically) that is periodic and damped. This periodic, damped motion was not observed experimentally, thus raising questions concerning the modeling
Evidence for Nodal superconductivity in SrScFePO
Point contact Andreev reflection spectra have been taken as a function of
temperature and magnetic field on the polycrystalline form of the newly
discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak
which disappears at the superconducting transition temperature, dominates all
of the spectra. Data taken in high magnetic fields show that this feature
survives until 7T at 2K and a flattening of the feature is observed in some
contacts. Here we inspect whether these observations can be interpreted within
a d-wave, or nodal order parameter framework which would be consistent with the
recent theoretical model where the height of the P in the Fe-P-Fe plane is key
to the symmetry of the superconductivity. However, in polycrystalline samples
care must be taken when examining Andreev spectra to eliminate or take into
account artefacts associated with the possible effects of Josephson junctions
and random alignment of grains.Comment: Published versio
Research and applications: Artificial intelligence
The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness
Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors
Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for
sub-mm instrumentation because of the high scalability of the technology. Here
we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon
noise limited performance of a small antenna coupled MKID detector array and we
describe the relation between photon noise and MKID intrinsic
generation-recombination noise. Additionally we use the observed photon noise
to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
Ranking and clustering of nodes in networks with smart teleportation
Random teleportation is a necessary evil for ranking and clustering directed
networks based on random walks. Teleportation enables ergodic solutions, but
the solutions must necessarily depend on the exact implementation and
parametrization of the teleportation. For example, in the commonly used
PageRank algorithm, the teleportation rate must trade off a heavily biased
solution with a uniform solution. Here we show that teleportation to links
rather than nodes enables a much smoother trade-off and effectively more robust
results. We also show that, by not recording the teleportation steps of the
random walker, we can further reduce the effect of teleportation with dramatic
effects on clustering.Comment: 10 pages, 7 figure
- …