6 research outputs found

    Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering

    No full text
    The dielectric constant of indium in the deep-ultraviolet (DUV) region satisfies the conditions for localized surface plasmon resonance with low absorption loss. We report that indium acts as an agent of efficient surface-enhanced resonance Raman scattering (SERRS) in the DUV. Indium-coated SERRS substrates were prepared by depositing indium on fused silica glass substrates with control of the deposition thickness to tailor the plasmon resonance in the DUV. With excitation at 266 nm, SERRS was observed from thin adenine films deposited on the indium-coated substrates, and the signal intensity was up to 11 times higher than that of a bare fused silica glass substrate. FDTD calculations showed that an enhanced electromagnetic field can be locally generated on the indium-coated substrates. Considering the volume of the enhanced field region in the excitation spot, we estimated the average enhancement factor to be 10<sup>2</sup> or higher. Our results indicate that indium is a promising and easy-to-use metal for efficiently exciting DUV-SERRS of samples containing a small number of molecules

    Correction for Extrinsic Background in Raman Hyperspectral Images

    No full text
    Raman hyperspectral microscopy is a valuable tool in biological and biomedical imaging. Because Raman scattering is often weak in comparison to other phenomena, prevalent spectral fluctuations and contaminations have brought advancements in analytical and chemometric methods for Raman spectra. These chemometric advances have been key contributors to the applicability of Raman imaging to biological systems. As studies increase in scale, spectral contamination from extrinsic background, intensity from sources such as the optical components that are extrinsic to the sample of interest, has become an emerging issue. Although existing baseline correction schemes often reduce intrinsic background such as autofluorescence originating from the sample of interest, extrinsic background is not explicitly considered, and these methods often fail to reduce its effects. Here, we show that extrinsic background can significantly affect a classification model using Raman images, yielding misleadingly high accuracies in the distinction of benign and malignant samples of follicular thyroid cell lines. To mitigate its effects, we develop extrinsic background correction (EBC) and demonstrate its use in combination with existing methods on Raman hyperspectral images. EBC isolates regions containing the smallest amounts of sample materials that retain extrinsic contributions that are specific to the device or environment. We perform classification both with and without the use of EBC, and we find that EBC retains biological characteristics in the spectra while significantly reducing extrinsic background. As the methodology used in EBC is not specific to Raman spectra, correction of extrinsic effects in other types of hyperspectral and grayscale images is also possible

    Label-Free Evaluation of Maturation and Hepatotoxicity of Human iPSC-Derived Hepatocytes Using Hyperspectral Raman Imaging

    No full text
    To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening
    corecore