85 research outputs found
Human Capital Development, Special Economic Zones, and Dubai as Case Study: a Literature Review
Purpose: This article maps the scholarly conversation on two important topics in the field of economic development: human capital and special economic zones. While these have been studied separately, little work is available on their intersection.
Ā
Design/methodology/approach: The article is a systematic literature review. It followed the preferred reporting items for systematic review and meta-analysis (PRISMA) criteria.
Ā
Findings: While human capital development has been largely discussed from the perspective of developed countries, it hasnāt been examined specifically in connection to SEZs. Moreover, there is solid evidence of the positive impact of industrial clusters, suggesting that SEZs that pursue the formation of industrial clusters might have the strongest effect on human capital development. The piece argues the intersection of human development and SEZ establishment is currently a gap in the literature calling for further empirical investigation
Ā
Originality: The literature review is brought to bear on the experience of the Emirate of Dubai, in order to highlight features of its development history that make it an ideal case study for empirical investigation
Energy Audit and Analysis of an Institutional Building under Subtropical Climate
Evaluation and estimation of energy consumption are essential in order to classify the amount of energy used and the way it is utilized in building. Hence, the possibility of any energy savings potential and energy savings opportunities can be identified. The intention of this article is to study and evaluate energy usage pattern of the Central Queensland University campusā buildings, Queensland, Australia. This article presents the field survey results from the audit of an office building and performance-related measurements of the indoor environmental parameters, for instance, indoor air temperature, humidity and energy consumption concerned to the indoor heating and cooling load. Monthly observed energy usage information was employed to investigate influence of the climate conditions on energy usage
Parental Support for Newcomer Childrenās Education in a Smaller Centre
This study explored the issues around parental support for newcomer childrenās transition to school in a smaller urban centre in Atlantic Canada where newcomer support is relatively limited. Data were drawn from semi-structured interviews with 11 newcomer parents, five children, and one settlement worker. The findings revealed newcomer parentsā difficulties in understanding the school system, limited engagement with the school community, isolation from other parents, and barriers to understanding and connecting with other parents. Among these newcomers, refugee parents are particularly challenged. We conclude that newcomer childrenās parental involvement need to be viewed multi-dimensionally, and that the creation of a commonly comfortable āmediated spaceā may be hampered by both cultural miscommunication and inadequate support provided to newcomer parents and children as well as the teaching staff
Institutional smart buildings energy audit
Smart buildings and Fuzzy based control systems used in Buildings Management System (BMS), Building Energy Management Systems (BEMS) and Building Automation Systems (BAS) are a point of interests among researcher and stake holders of buildingsā developing sector due to its ability to save energy and reduce greenhouse gas emissions. Therefore this paper will review, investigates define and evaluates the use of fuzzy logic controllers in smart buildings under subtropical Australiaās subtropical regions. In addition the paper also will define the latest development, design and proposed controlling strategies used in institutional buildings. Furthermore this paper will highlight and discuss the conceptual basis of these technologies including Fuzzy, Neural and Hybrid add-on technologies, its capabilities and its limitation
Functions of fuzzy logic based controllers used in smart building
The main aim of this study is to support design and development processes of advanced fuzzy-logic-based controller for smart buildings e.g., heating, ventilation and air conditioning, heating, ventilation and air conditioning (HVAC) and indoor lighting control systems. Moreover, the proposed methodology can be used to assess systems energy and environmental performances, also compare energy usages of fuzzy control systems with the performances of conventional on/off and proportional integral derivative controller (PID). The main objective and purpose of using fuzzy-logic-based model and control is to precisely control indoor thermal comfort e.g., temperature, humidity, air quality, air velocity, thermal comfort, and energy balance. Moreover, this article present and highlight mathematical models of indoor temperature and humidity transfer matrix, uncertainties of usersā comfort preference set-points and a fuzzy algorithm
Automatic neonatal sleep stage classification:A comparative study
Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study
HumanāComputer Interaction and Participation in Software Crowdsourcing
Improvements in communication and networking technologies have transformed peopleās lives and organizationsā activities. Web 2.0 innovation has provided a variety of hybridized applications and tools that have changed enterprisesā functional and communication processes. People use numerous platforms to broaden their social contacts, select items, execute duties, and learn new things. Context: Crowdsourcing is an internet-enabled problem-solving strategy that utilizes humanācomputer interaction to leverage the expertise of people to achieve business goals. In crowdsourcing approaches, three main entities work in collaboration to solve various problems. These entities are requestors (job providers), platforms, and online users. Tasks are announced by requestors on crowdsourcing platforms, and online users, after passing initial screening, are allowed to work on these tasks. Crowds participate to achieve various rewards. Motivation: Crowdsourcing is gaining importance as an alternate outsourcing approach in the software engineering industry. Crowdsourcing application development involves complicated tasks that vary considerably from the micro-tasks available on platforms such as Amazon Mechanical Turk. To obtain the tangible opportunities of crowdsourcing in the realm of software development, corporations should first grasp how this technique works, what problems occur, and what factors might influence community involvement and co-creation. Online communities have become more popular recently with the rise in crowdsourcing platforms. These communities concentrate on specific problems and help people with solving and managing these problems. Objectives: We set three main goals to research crowd interaction: (1) find the appropriate characteristics of social crowd utilized for effective software crowdsourcing, (2) highlight the motivation of a crowd for virtual tasks, and (3) evaluate primary participation reasons by assessing various crowds using Fuzzy AHP and TOPSIS method. Conclusion: We developed a decision support system to examine the appropriate reasons of crowd participation in crowdsourcing. Rewards and employments were evaluated as the primary motives of crowds for accomplishing tasks on crowdsourcing platforms, knowledge sharing was evaluated as the third reason, ranking was the fourth, competency was the fifth, socialization was sixth, and source of inspiration was the seventh.Princess Nourah bint Abdulrahman University Researchers Supporting - Riyadh, Saudi Arabia. Project number (PNURSP2023TR140)
SkipGateNet: A Lightweight CNN-LSTM Hybrid Model with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT
The rise of Internet of Things (IoT) has led to increased security risks, particularly from botnet attacks that exploit IoT device vulnerabilities. This situation necessitates effective Intrusion Detection Systems (IDS), that are accurate, lightweight, and fast (having less inference time), designed particularly to detect botnet attacks in resource constrained IoT devices. This paper proposes SkipGateNet, a novel deep learning model designed for detecting Mirai and Bashlite botnet attacks in resource constrained IoT and fog computing environments. SkipGateNet is a lightweight, fast model combining 1D-Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) layers. The novelty of this model lies in the integration of āLearnable Skip Connectionsā. These connections feature gating mechanisms that enhance detection by focusing on relevant features and ignoring irrelevant ones. They add adaptability to the architecture, performing feature selection and propagating only essential features to deeper layers. Tested on the N-BaIoT dataset, SkipGateNet efficiently detects ten types of botnet attacks, with a remarkable test accuracy of 99.91%. It is also compact (2596.87 KB) and demonstrates a quick inference time of 8.0 milliseconds, suitable for real-time implementation in resource-limited settings. While evaluating its performance, parameters like precision, recall, accuracy, and F1 score were considered, along with statistical reliability measures like Cohenās Kappa Coefficient and Matthews Correlation Coefficient. These highlight its reliability and effectiveness in IoT security challenges. The paper also compares SkipGateNet to existing models and four other deep learning architectures, including two sequential CNN architectures, a simple CNN+LSTM architecture, and a CNN+LSTM with standard skip connections. SkipGateNet surpasses all in accuracy and inference time, demonstrating its superiority in addressing IoT security issues
A Highly Secured Image Encryption Scheme using Quantum Walk and Chaos
The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation (4G) and 5th generation (5G) etc. Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way. Instead of the classical random walk, this paper proposes the quantum walk to achieve high image security. Classical random walk exhibits randomness due to the stochastic transitions between states, on the other hand, the quantum walk is more random and achieve randomness due to the superposition, and the interference of the wave functions. The proposed image encryption scheme is evaluated using extensive security metrics such as correlation coefficient, entropy, histogram, time complexity, number of pixels change rate and unified average intensity etc. All experimental results validate the proposed scheme, and it is concluded that the proposed scheme is highly secured, lightweight and computationally efficient. In the proposed scheme, the values of the correlation coefficient, entropy, mean square error (MSE), number of pixels change rate (NPCR), unified average change intensity (UACI) and contrast are 0.0069, 7.9970, 40.39, 99.60%, 33.47 and 10.4542 respectively
Automatic neonatal sleep stage classification: A comparative study
Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study
- ā¦