144 research outputs found
In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)
We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges
Interferometry and its Applications in Surface Metrology
Interferometry has been a time-honored technique for surface topography measurement. Interferometric measurements of surface shape are relative measurement techniques in which the shape of a known surface is compared with that of an unknown surface, and the difference is displayed as a series of interference fringes. Noise attached in the interference fringes can have catastrophic effects on the phase-unwrapping process, so denoising is essential before reconstruction. Some noise may be generated due to vibrations when multiple images over a finite time period are captured for reconstruction by phase-shifting technique. This harmful noise is drastically reduced when fast phase shifting–based single-shot parallel four-step combined with Fizeau interferometer is applied. Measuring the shape of strongly curved surfaces using two-beam interferometry is very complicated due to the higher fringe density. This problem may be solved by multiple-beam interferometry, thanks to the very sharp interference fringes. The experimental results show the feasibility and high precision of multiple-beam interferometry
System calibration method for Fourier ptychographic microscopy
Fourier ptychographic microscopy (FPM) is a recently proposed quantitative
phase imaging technique with high resolution and wide field-of-view (FOV). In
current FPM imaging platforms, systematic error sources come from the
aberrations, LED intensity fluctuation, parameter imperfections and noise,
which will severely corrupt the reconstruction results with artifacts. Although
these problems have been researched and some special methods have been proposed
respectively, there is no method to solve all of them. However, the systematic
error is a mixture of various sources in the real situation. It is difficult to
distinguish a kind of error source from another due to the similar artifacts.
To this end, we report a system calibration procedure, termed SC-FPM, based on
the simulated annealing (SA) algorithm, LED intensity correction and adaptive
step-size strategy, which involves the evaluation of an error matric at each
iteration step, followed by the re-estimation of accurate parameters. The great
performance has been achieved both in simulation and experiments. The reported
system calibration scheme improves the robustness of FPM and relaxes the
experiment conditions, which makes the FPM more pragmatic.Comment: 18 pages, 9 figure
Data preprocessing methods for robust Fourier ptychographic microscopy
Fourier ptychographic microscopy (FPM) is a recently proposed computational
imaging technique with both high resolution and wide field-of-view. In current
FP experimental setup, the dark-field images with high-angle illuminations are
easily submerged by stray light and background noise due to the low
signal-to-noise ratio, thus significantly degrading the reconstruction quality
and also imposing a major restriction on the synthetic numerical aperture (NA)
of the FP approach. To this end, an overall and systematic data preprocessing
scheme for noise removal from FP's raw dataset is provided, which involves
sampling analysis as well as underexposed/overexposed treatments, then followed
by the elimination of unknown stray light and suppression of inevitable
background noise, especially Gaussian noise and CCD dark current in our
experiments. The reported non-parametric scheme facilitates great enhancements
of the FP's performance, which has been demonstrated experimentally that the
benefits of noise removal by these methods far outweigh its defects of
concomitant signal loss. In addition, it could be flexibly cooperated with the
existing state-of-the-art algorithms, producing a stronger robustness of the FP
approach in various applications.Comment: 7 pages, 8 figure
Surface Characterization by the Use of Digital Holography
Digital holography (DH) is an attractive measuring optical technique in the fields of engineering and science due to its remarkable accuracy and efficiency. The holograms are recorded by an interferometer and reconstructed by numerical methods such as Fresnel transform, convolution approach, and angular spectrum. Because harmful coherent noise often arises when long coherent lengths are used, bright femtosecond pulse light with ultrashort coherent length may be the solution to reduce both spurious and speckle noises. Since the usual DH uses a visible light, it is difficult to visualize 3D internal structure of visibly opaque objects due to their limited penetration depth. The terahertz (THz) radiation has a good penetration capability; thus, 3D visualization of both surface shape and internal structure in visibly opaque object can be achieved via THz-DH technique
In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)
We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges
- …