13 research outputs found
The parameter configuration for our proposed system.
The parameter configuration for our proposed system.</p
Accuracy comparison with a complex model.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div
Comparisons of the proposed system and existing model.
Comparisons of the proposed system and existing model.</p
Experimental environment.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div
ROC curve of the proposed system.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div
Summary of the sport action recognition-related work.
Summary of the sport action recognition-related work.</p
Overview of health monitoring of the sports person using CNN and LSTM with a self-attention model.
Overview of health monitoring of the sports person using CNN and LSTM with a self-attention model.</p
Accuracy comparison.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div
Sensor location.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div
Accuracy comparison with simple model.
Sports performance and health monitoring are essential for athletes to maintain peak performance and avoid potential injuries. In this paper, we propose a sports health monitoring system that utilizes wearable devices, cloud computing, and deep learning to monitor the health status of sports persons. The system consists of a wearable device that collects various physiological parameters and a cloud server that contains a deep learning model to predict the sportsperson’s health status. The proposed model combines a Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-attention mechanisms. The model is trained on a large dataset of sports persons’ physiological data and achieves an accuracy of 93%, specificity of 94%, precision of 95%, and an F1 score of 92%. The sports person can access the cloud server using their mobile phone to receive a report of their health status, which can be used to monitor their performance and make any necessary adjustments to their training or competition schedule.</div