3,485 research outputs found
Click-aware purchase prediction with push at the top
Eliciting user preferences from purchase records for performing purchase
prediction is challenging because negative feedback is not explicitly observed,
and because treating all non-purchased items equally as negative feedback is
unrealistic. Therefore, in this study, we present a framework that leverages
the past click records of users to compensate for the missing user-item
interactions of purchase records, i.e., non-purchased items. We begin by
formulating various model assumptions, each one assuming a different order of
user preferences among purchased, clicked-but-not-purchased, and non-clicked
items, to study the usefulness of leveraging click records. We implement the
model assumptions using the Bayesian personalized ranking model, which
maximizes the area under the curve for bipartite ranking. However, we argue
that using click records for bipartite ranking needs a meticulously designed
model because of the relative unreliableness of click records compared with
that of purchase records. Therefore, we ultimately propose a novel
learning-to-rank method, called P3Stop, for performing purchase prediction. The
proposed model is customized to be robust to relatively unreliable click
records by particularly focusing on the accuracy of top-ranked items.
Experimental results on two real-world e-commerce datasets demonstrate that
P3STop considerably outperforms the state-of-the-art implicit-feedback-based
recommendation methods, especially for top-ranked items.Comment: For the final published journal version, see
https://doi.org/10.1016/j.ins.2020.02.06
Metabolic dynamics and physiological adaptation of Panax ginseng during development
Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age
Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications
AbstractSilver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV–vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV–vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers
The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana
The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type plants. The expression of genes involved in oxylipin production was also higher in the pPLAIIα-deficient mutant than in wild-type plants. The mutant plants lost water faster than wild type plants did. The stomata of wild type and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and wild type leaves produced abscisic acid at the same rate, but after 4 h of desiccation, the jasmonic acid level was much higher in mutant than wild-type leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes
Representative levels of blood lead, mercury, and urinary cadmium in youth: Korean Environmental Health Survey in Children and Adolescents (KorEHS-C), 2012–2014
AbstractBackgroundThis study examined levels of blood lead and mercury, and urinary cadmium, and associated sociodemographic factors in 3–18 year-old Korean children and adolescents.Materials and methodsWe used the nationally representative Korean Environmental Health Survey in Children and Adolescents data for 2012–2014 and identified 2388 children and adolescents aged 3–18 years. The median and 95th percentile exposure biomarker levels with 95% confidence intervals (CIs) were calculated. Multivariate regression analyses were performed on log transformed exposure biomarker levels adjusted for age, sex, area, household income, and father’s education level. The median exposure biomarker levels were compared with data from Germany, the US, and Canada, as well as the levels of Korean children measured at different times.ResultsThe median levels of blood lead and mercury, as well as urinary cadmium were 1.23μg/dL, 1.80μg/L, and 0.40μg/L (95% CIs, 1.21–1.25, 1.77–1.83, and 0.39–0.41, respectively). The blood lead levels were significantly higher in boys and younger children (p<0.0001) and children with less educated fathers (p=0.004) after adjusting for covariates. Urinary cadmium level increased with age (p<0.0001). The median levels of blood mercury and urinary cadmium were much higher in Korean children and adolescents than those in their peers in Germany, the US, and Canada. Blood lead levels tended to decrease with increasing age and divergence between the sexes, particularly in the early teen years. Median levels of blood lead and urinary cadmium decreased since 2010.ConclusionSociodemographic factors, including age, sex, and father’s education level were associated with environmental exposure to heavy metals in Korean children and adolescents. These biomonitoring data are valuable for ongoing surveillance of environmental exposure in this vulnerable population
Nanostructured, Self-Assembling Peptide K5 Blocks TNF-α and PGE2 Production by Suppression of the AP-1/p38 Pathway
Nanostructured, self-assembling peptides hold promise for a variety of regenerative medical applications such as 3D cell culture systems, accelerated wound healing, and nerve repair. The aim of this study was to determine whether the self-assembling peptide K5 can be applied as a carrier of anti-inflammatory drugs. First, we examined whether the K5 self-assembling peptide itself can modulate various cellular inflammatory responses. We found that peptide K5 significantly suppressed the release of tumor-necrosis-factor- (TNF-) α and prostaglandin E2 (PGE2) from RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Similarly, there was inhibition of cyclooxygenase- (COX-) 2 mRNA expression assessed by real-time PCR, indicating that the inhibition is at the transcriptional level. In agreement with this finding, peptide K5 suppressed the translocation of the transcription factors activator protein (AP-1) and c-Jun and inhibited upstream inflammatory effectors including mitogen activated protein kinase (MAPK), p38, and mitogen-activated protein kinase kinase 3/6 (MKK 3/6). Whether this peptide exerts its effects via a transmembrane or cytoplasmic receptor is not clear. However, our data strongly suggest that the nanostructured, self-assembling peptide K5 may possess significant anti-inflammatory activity via suppression of the p38/AP-1 pathway
Investigation on Health Effects of an Abandoned Metal Mine
To investigate potential health risks associated with exposure to metals from an abandoned metal mine, the authors studied people living near an abandoned mine (n=102) and control groups (n=149). Levels of cadmium, copper, arsenic, lead, and zinc were measured in the air, soil, drinking water, and agricultural products. To assess individual exposure, biomarkers of each metal in blood and urine were measured. β2-microglobulin, α1-microglobulin, and N-acetyl-beta-glucosaminidase and bone mineral density were measured. Surface soil in the study area showed 2-10 times higher levels of metals compared to that of the control area. Metal concentrations in the groundwater and air did not show any notable differences between groups. Mean concentrations of cadmium and copper in rice and barley from the study area were significantly higher than those of the control area (p<0.05). Geometric means of blood and urine cadmium in the study area were 2.9 µg/L and 1.5 µg/g Cr, respectively, significantly higher than those in the control area (p<0.05). There were no differences in the levels of urinary markers of early kidney dysfunction and bone mineral density. The authors conclude that the residents near the abandoned mine were exposed to higher levels of metals through various routes
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
Recommended from our members
Calorimetric evidence for two phase transitions in Ba1−xKxFe2As2 with fermion pairing and quadrupling states
Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (T c). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z 2 time-reversal symmetry was reported in Ba1−xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z 2 time-reversal symmetry is broken (TcZ2>Tc). Here, we report on detecting two anomalies in the specific heat of Ba1−xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z 2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order
Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock
Mammalian 2-Cys peroxiredoxin II (Prx II) is a cellular peroxidase that eliminates endogenous H2O2. The involvement of Prx II in the regulation of lipopolysaccharide (LPS) signaling is poorly understood. In this report, we show that LPS induces substantially enhanced inflammatory events, which include the signaling molecules nuclear factor κB and mitogen-activated protein kinase (MAPK), in Prx II–deficient macrophages. This effect of LPS was mediated by the robust up-regulation of the reactive oxygen species (ROS)–generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the phosphorylation of p47phox. Furthermore, challenge with LPS induced greater sensitivity to LPS-induced lethal shock in Prx II–deficient mice than in wild-type mice. Intravenous injection of Prx II–deficient mice with the adenovirus-encoding Prx II gene significantly rescued mice from LPS-induced lethal shock as compared with the injection of a control virus. The administration of catalase mimicked the reversal effects of Prx II on LPS-induced inflammatory responses in Prx II–deficient cells, which suggests that intracellular H2O2 is attributable, at least in part, to the enhanced sensitivity to LPS. These results indicate that Prx II is an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities and, therefore, is crucial for the prevention of excessive host responses to microbial products
- …