1,244 research outputs found
UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking
In recent years, numerous effective multi-object tracking (MOT) methods are
developed because of the wide range of applications. Existing performance
evaluations of MOT methods usually separate the object tracking step from the
object detection step by using the same fixed object detection results for
comparisons. In this work, we perform a comprehensive quantitative study on the
effects of object detection accuracy to the overall MOT performance, using the
new large-scale University at Albany DETection and tRACking (UA-DETRAC)
benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging
video sequences captured from real-world traffic scenes (over 140,000 frames
with rich annotations, including occlusion, weather, vehicle category,
truncation, and vehicle bounding boxes) for object detection, object tracking
and MOT system. We evaluate complete MOT systems constructed from combinations
of state-of-the-art object detection and object tracking methods. Our analysis
shows the complex effects of object detection accuracy on MOT system
performance. Based on these observations, we propose new evaluation tools and
metrics for MOT systems that consider both object detection and object tracking
for comprehensive analysis.Comment: 18 pages, 11 figures, accepted by CVI
A model-free feature selection technique of feature screening and random forest based recursive feature elimination
In this paper, we propose a model-free feature selection method for
ultra-high dimensional data with mass features. This is a two phases procedure
that we propose to use the fused Kolmogorov filter with the random forest based
RFE to remove model limitations and reduce the computational complexity. The
method is fully nonparametric and can work with various types of datasets. It
has several appealing characteristics, i.e., accuracy, model-free, and
computational efficiency, and can be widely used in practical problems, such as
multiclass classification, nonparametric regression, and Poisson regression,
among others. We show that the proposed method is selection consistent and
consistent under weak regularity conditions. We further demonstrate the
superior performance of the proposed method over other existing methods by
simulations and real data examples
Large-scale Weakly Supervised Learning for Road Extraction from Satellite Imagery
Automatic road extraction from satellite imagery using deep learning is a
viable alternative to traditional manual mapping. Therefore it has received
considerable attention recently. However, most of the existing methods are
supervised and require pixel-level labeling, which is tedious and error-prone.
To make matters worse, the earth has a diverse range of terrain, vegetation,
and man-made objects. It is well known that models trained in one area
generalize poorly to other areas. Various shooting conditions such as light and
angel, as well as different image processing techniques further complicate the
issue. It is impractical to develop training data to cover all image styles.
This paper proposes to leverage OpenStreetMap road data as weak labels and
large scale satellite imagery to pre-train semantic segmentation models. Our
extensive experimental results show that the prediction accuracy increases with
the amount of the weakly labeled data, as well as the road density in the areas
chosen for training. Using as much as 100 times more data than the widely used
DeepGlobe road dataset, our model with the D-LinkNet architecture and the
ResNet-50 backbone exceeds the top performer of the current DeepGlobe
leaderboard. Furthermore, due to large-scale pre-training, our model
generalizes much better than those trained with only the curated datasets,
implying great application potential
- …