17 research outputs found
First-principles investigation of the adsorption behaviors of CH <sub>2</sub> O on BN, AlN, GaN, InN, BP, and P monolayers
CH 2 O is a common toxic gas molecule that can cause asthma and dermatitis in humans. In this study the adsorption behaviors of the CH 2 O adsorbed on the boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), boron phosphide (BP), and phosphorus (P) monolayers were investigated using the first-principles method, and potential materials that could be used for detecting CH 2 O were identified. The gas adsorption energies, charge transfers and electronic properties of the gas adsorption systems have been calculated to study the gas adsorption behaviors of CH 2 O on these single-layer materials. The electronic characteristics of these materials, except for the BP monolayer, were observed to change after CH 2 O adsorption. For CH 2 O on the BN, GaN, BP, and P surfaces, the gas adsorption behaviors were considered to follow a physical trend, whereas CH 2 O was chemically adsorbed on the AlN and InN monolayers. Given their large gas adsorption energies and high charge transfers, the AlN, GaN, and InN monolayers are potential materials for CH 2 O detection using the charge transfer mechanism. Electronic Components, Technology and Material
First principles study of gas molecules adsorption on monolayered β-SnSe
For the purpose of exploring the application of two-dimensional (2D) material in the field of gas sensors, the adsorption properties of gas molecules, CO, CO2, CH2O, O2, NO2, and SO2 on the surface of monolayered tin selenium in β phase (β-SnSe) has been researched by first principles calculation based on density functional theory (DFT). The results indicate that β-SnSe sheet presents weak physisorption for CO and CO2 molecules with small adsorption energy and charge transfers, which show that a β-SnSe sheet is not suitable for sensing CO and CO2. The adsorption behavior of CH2O molecules adsorbed on a β-SnSe monolayer is stronger than that of CO and CO2, revealing that the β-SnSe layer can be applied to detect CH2O as physical sensor. Additionally, O2, NO2, and SO2 are chemically adsorbed on a β-SnSe monolayer with moderate adsorption energy and considerable charge transfers. All related calculations reveal that β-SnSe has a potential application in detecting and catalyzing O2, NO2, and SO2 molecules.Electronic Components, Technology and Material
First principles study of gas molecules adsorption on monolayered β-SnSe
For the purpose of exploring the application of two-dimensional (2D) material in the field of gas sensors, the adsorption properties of gas molecules, CO, CO2, CH2O, O2, NO2, and SO2 on the surface of monolayered tin selenium in β phase (β-SnSe) has been researched by first principles calculation based on density functional theory (DFT). The results indicate that β-SnSe sheet presents weak physisorption for CO and CO2 molecules with small adsorption energy and charge transfers, which show that a β-SnSe sheet is not suitable for sensing CO and CO2. The adsorption behavior of CH2O molecules adsorbed on a β-SnSe monolayer is stronger than that of CO and CO2, revealing that the β-SnSe layer can be applied to detect CH2O as physical sensor. Additionally, O2, NO2, and SO2 are chemically adsorbed on a β-SnSe monolayer with moderate adsorption energy and considerable charge transfers. All related calculations reveal that β-SnSe has a potential application in detecting and catalyzing O2, NO2, and SO2 molecules.Electronic Components, Technology and Material
Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals
For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and < 111 >, respectively, while they are in the orientations < 111 > and < 100 > for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol-1 K-1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of states in the orbital hybridization between Ga and N atoms of wurtzite GaN are much higher, indicating more electrons participate in forming Ga-N ionic bonds in the wurtzite GaN.Electronic Components, Technology and Material
First-Principles Study on the Elastic Mechanical Properties and Anisotropies of Gold–Copper Intermetallic Compounds
In this study, first-principles calculations were utilized to investigate the lattice constants, elastic constants, and mechanical properties of gold–copper (Au–Cu) intermetallic compounds (IMCs), including AuCu3, AuCu, and Au3Cu. We also verified the direction dependence of the Young’s modulus, shear modulus, and Poisson’s ratio of the compounds. The calculated lattice parameters agreed with the experimental data, and the single-crystal elastic constants, elastic modulus E, shear modulus G, bulk modulus B, and Poisson’s ratio ν were calculated. For the Young’s and shear moduli, AuCu3 showed the highest anisotropy, followed by AuCu and Au3Cu. The Poisson’s ratios of AuCu3 and Au3Cu crystals were isotropic on (100) and (111) crystal planes and anisotropic on the (110) crystal plane. However, the Poisson’s ratio of the AuCu crystal was anisotropic on (100) and (111) crystal planes and isotropic on the (110) crystal plane.Electronic Components, Technology and Material
Bond Wire Damage Detection Method on Discrete MOSFETs Based on Two-Port Network Measurement
Bond wire damage is one of the most common failure modes of metal-oxide semiconductor field-effect transistor (MOSFET) power devices in wire-welded packaging. This paper proposes a novel bond wire damage detection approach based on two-port network measurement by identifying the MOSFET source parasitic inductance (LS). Numerical calculation shows that the number of bond wire liftoffs will change the LS, which can be used as an effective bond wire damage precursor. Considering a power MOSFET as a two-port network, LS is accurately extracted from frequency domain impedance (Z−parameter) using a vector network analyzer under zero biasing conditions. Bond wire cutoff experiments are employed to validate the proposed approach for bond wire damage detection. The result shows that LS increases with the rising severity of bond wire faults, and even the slight fault shows a high sensitivity, which can be effectively used to quantify the number of bond wire liftoffs of discrete MOSFETs. Meanwhile, the source parasitic resistance (RS) extracted from the proposed two-port network measurement can be used for the bond wire damage detection of high switching frequency silicon carbide MOSFETs. This approach offers an effective quality screening technology for discrete MOSFETs without power on treatment.Electronic Components, Technology and Material
The effects of graphene stacking on the performance of methane sensor: A first-principles study on the adsorption, band gap and doping of graphene
The effects of graphene stacking are investigated by comparing the results of methane adsorption energy, electronic performance, and the doping feasibility of five dopants (i.e., B, N, Al, Si, and P) via first-principles theory. Both zigzag and armchair graphenes are considered. It is found that the zigzag graphene with Bernal stacking has the largest adsorption energy on methane, while the armchair graphene with Order stacking is opposite. In addition, both the Order and Bernal stacked graphenes possess a positive linear relationship between adsorption energy and layer number. Furthermore, they always have larger adsorption energy in zigzag graphene. For electronic properties, the results show that the stacking effects on band gap are significant, but it does not cause big changes to band structure and density of states. In the comparison of distance, the average interlamellar spacing of the Order stacked graphene is the largest. Moreover, the adsorption effect is the result of the interactions between graphene and methane combined with the change of graphene’s structure. Lastly, the armchair graphene with Order stacking possesses the lowest formation energy in these five dopants. It could be the best choice for doping to improve the methane adsorption.Electronic Components, Technology and Material
The Mechanical Properties and Elastic Anisotropy of η’-Cu6Sn5 and Cu3Sn Intermetallic Compounds
Full intermetallic compound (IMC) solder joints present fascinating advantages in high-temperature applications. In this study, the mechanical properties and elastic anisotropy of η’-Cu6Sn5 and Cu3Sn intermetallic compounds were investigated using first-principles calculations. The values of single-crystal elastic constants, the elastic (E), shear (G), and bulk (B) moduli, and Poisson’s ratio (ν) were identified. In addition, the two values of G/B and ν indicated that the two IMCs were ductile materials. The elastic anisotropy of η’-Cu6Sn5 was found to be higher than Cu3Sn by calculating the universal anisotropic index. Furthermore, an interesting discovery was that the above two types of monocrystalline IMC exhibited mechanical anisotropic behavior. Specifically, the anisotropic degree of E and B complied with the following relationship: η’-Cu6Sn5 > Cu3Sn; however, the relationship was Cu3Sn > η’-Cu6Sn5 for the G. It is noted that the anisotropic degree of E and G was similar for the two IMCs. In addition, the anisotropy of the B was higher than the G and E, respectively, for η’-Cu6Sn5; however, in the case of Cu3Sn, the anisotropic degree of B, G, and E was similar.Electronic Components, Technology and Material
Inactivation of Escherichia coli and Staphylococcus aureus by using a UVC-LED module with a multi-wavelength setting
UVC-LED is known as a deep ultraviolet LED. The application development and disinfection efficiency of UVC-LED modules are important problems encountered when UVC-LED products are rushed into commercialization. In this article, a specific disinfection experiment with a UVC-LED module was combined to analyze the disinfection efficiency. UVC-LEDs with wavelengths of 260 and 280 nm were used and supplemented with UVA-LEDs with wavelengths of 360 and 390 nm. The module was packaged to investigate the inactivation of Escherichia coli and Staphylococcus aureus. Two new findings were obtained through the analysis and comparison of the experiments. First, the short wavelength from UVA might have an enhanced destructive effect on microorganisms when the radiation intensity of UVA-LED was sufficient with coupling UVA and UVC. Second, 260 nm UVC-LED lamp beads might have a shorter response time to inactivate microorganisms than 280 nm UVC-LED lamp beads. Bactericidal experiments near the surface and different radiation distances showed that the inactivation rate reached 99.9% after 1 min of exposure when the UVC-LED module was set at 260 or 280 nm wavelength lamp beads for disinfection. The disinfection efficiency of 280 nm UVC-LED lamp beads was higher than that of 260 nm UVC-LED lamp beads because of the increased UV intensity. The radiation distance was within 7.5 cm range, the exposure time was 60 s, the inactivation rate was over 99.9%, and the disinfection effect was remarkable. For current UVC-LED applications, such as near-surface UVC-LED, disinfection and air purification products have a high value.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material
Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer
Based on molecular dynamics (MD), in this study, a model was established to simulate the initial coating morphology of silver paste by using a random algorithm, and the effects of different sizes of particles on sintering porosity were also analyzed. The MD result reveals that compared with the sintering process using large-scale silver particles, the sintering process using multi-scale silver particles would enhance the densification under the same sintering conditions, which authenticates the feasibility of adding small silver particles to large-scale silver particles in theory. In addition, to further verify the feasibility of the multi-scale sintering, a semi in-situ observation was prepared for a sintering experiment using micro-nano multi-scale silver paste. The feasibility of multi-scale silver sintering is proved by theoretical and experimental means, which can provide a meaningful reference for optimizing the sintering process and the preparation of silver paste for die-attach in powering electronics industry. In addition, it is hoped that better progress can be made on this basis in the future.Electronic Components, Technology and Material