43 research outputs found

    Yang monopoles and emergent three-dimensional topological defects in interacting bosons

    Full text link
    Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand interaction effects on Yang monopoles. Here, we show that collective motions of many interacting bosons give rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariant that are not easy to access in solids.Comment: 6 pages (2 figures) + 7 pages (2 figures); accepted draft; fixed link

    Harmonically trapped Fermi gas: Temperature dependence of the Tan contact

    Full text link
    Ultracold atomic gases with short-range interactions are characterized by a number of universal species-independent relations. Many of these relations involve the two-body Tan contact. Employing the canonical ensemble, we determine the Tan contact for small harmonically trapped two-component Fermi gases at unitarity over a wide range of temperatures, including the zero and high temperature regimes. A cluster expansion that describes the properties of the N-particle system in terms of those of smaller subsystems is introduced and shown to provide an accurate description of the contact in the high temperature regime. Finite-range corrections are quantified and the role of the Fermi statistics is elucidated by comparing results for Fermi, Bose and Boltzmann statistics.Comment: 5 figures (several subfigures

    Dynamics of small trapped one-dimensional Fermi gas under oscillating magnetic fields

    Get PDF
    Deterministic preparation of an ultracold harmonically trapped one-dimensional Fermi gas consisting of a few fermions has been realized by the Heidelberg group. Using Floquet formalism, we study the time dynamics of two- and three-fermion systems in a harmonic trap under an oscillating magnetic field. The oscillating magnetic field produces a time-dependent interaction strength through a Feshbach resonance. We explore the dependence of these dynamics on the frequency of the oscillating magnetic field for non-interacting, weakly interacting, and strongly interacting systems. We identify the regimes where the system can be described by an effective two-state model and an effective three-state model. We find an unbounded coupling to all excited states at the infinitely strong interaction limit and several simple relations that characterize the dynamics. Based on our findings, we propose a technique for driving transition from the ground state to the excited states using an oscillating magnetic field.Comment: 11 pages, 7 figure

    Abnormal superfluid fraction and structural properties of electrons in 2D and 3D quantum dots: an ab initio path-integral Monte Carlo study

    Full text link
    We present extensive new direct path-integral Monte Carlo results for electrons in quantum dots in two and three dimensions. This allows us to investigate the nonclassical rotational inertia (NCRI) of the system, and we find an abnormal negative superfluid fraction [Phys. Rev. Lett. 112, 235301 (2014)] under some conditions. In addition, we study the structural properties by computing a sophisticated center-two particle correlation function. Remarkably, we find no connection between the spatial structure and the NCRI, since the former can be nearly identical for Fermi- and Bose-statistics for parameters where the superfluid fraction is diverging towards negative infinity
    corecore