535 research outputs found

    Offline Evaluation via Human Preference Judgments: A Dueling Bandits Problem

    Get PDF
    The dramatic improvements in core information retrieval tasks engendered by neural rankers create a need for novel evaluation methods. If every ranker returns highly relevant items in the top ranks, it becomes difficult to recognize meaningful differences between them and to build reusable test collections. Several recent papers explore pairwise preference judgments as an alternative to traditional graded relevance assessments. Rather than viewing items one at a time, assessors view items side-by-side and indicate the one that provides the better response to a query, allowing fine-grained distinctions. If we employ preference judgments to identify the probably best items for each query, we can measure rankers by their ability to place these items as high as possible. I frame the problem of finding best items as a dueling bandits problem. While many papers explore dueling bandits for online ranker evaluation via interleaving, they have not been considered as a framework for offline evaluation via human preference judgments. I review the literature for possible solutions. For human preference judgments, any usable algorithm must tolerate ties since two items may appear nearly equal to assessors. It must minimize the number of judgments required for any specific pair since each such comparison requires an independent assessor. Since the theoretical guarantees provided by most algorithms depend on assumptions that are not satisfied by human preference judgments, I simulate selected algorithms on representative test cases to provide insight into their practical utility. In contrast to the previous paper presented at SIGIR 2022 [87], I include more theoretical analysis and experimental results in this work. Based on the simulations, two algorithms stand out for their potential. I proceed with the method of Clarke et al. [20], and the simulations suggest modifications to further improve its performance. Using the modified algorithm, over 10,000 preference judgments for pools derived from submissions to the TREC 2021 Deep Learning Track are collected, confirming its suitability. We test the idea of best-item evaluation and suggest ideas for further theoretical and practical progress

    Learn-to-Decompose: Cascaded Decomposition Network for Cross-Domain Few-Shot Facial Expression Recognition

    Get PDF
    Most existing compound facial expression recognition (FER) methods rely on large-scale labeled compound expression data for training. However, collecting such data is labor-intensive and time-consuming. In this paper, we address the compound FER task in the cross-domain few-shot learning (FSL) setting, which requires only a few samples of compound expressions in the target domain. Specifically, we propose a novel cascaded decomposition network (CDNet), which cascades several learn-to-decompose modules with shared parameters based on a sequential decomposition mechanism, to obtain a transferable feature space. To alleviate the overfitting problem caused by limited base classes in our task, a partial regularization strategy is designed to effectively exploit the best of both episodic training and batch training. By training across similar tasks on multiple basic expression datasets, CDNet learns the ability of learn-to-decompose that can be easily adapted to identify unseen compound expressions. Extensive experiments on both in-the-lab and in-the-wild compound expression datasets demonstrate the superiority of our proposed CDNet against several state-of-the-art FSL methods

    Targeted online password guessing:an underestimated threat

    Get PDF
    While trawling online/offline password guessing has been intensively studied, only a few studies have examined targeted online guessing, where an attacker guesses a specific victim's password for a service, by exploiting the victim's personal information such as one sister password leaked from her another account and some personally identifiable information (PII). A key challenge for targeted online guessing is to choose the most effective password candidates, while the number of guess attempts allowed by a server's lockout or throttling mechanisms is typically very small. We propose TarGuess, a framework that systematically characterizes typical targeted guessing scenarios with seven sound mathematical models, each of which is based on varied kinds of data available to an attacker. These models allow us to design novel and efficient guessing algorithms. Extensive experiments on 10 large real-world password datasets show the effectiveness of TarGuess. Particularly, TarGuess I~IV capture the four most representative scenarios and within 100 guesses: (1) TarGuess-I outperforms its foremost counterpart by 142% against security-savvy users and by 46% against normal users; (2) TarGuess-II outperforms its foremost counterpart by 169% on security-savvy users and by 72% against normal users; and (3) Both TarGuess-III and IV gain success rates over 73% against normal users and over 32% against security-savvy users. TarGuess-III and IV, for the first time, address the issue of cross-site online guessing when given the victim's one sister password and some PII

    Literary destination familiarity and inbound tourism: evidence from mainland China

    Get PDF
    Destination familiarity is an important non-economic determinant of tourists’ destination choice that has not been adequately studied. This study posits a literary dimension to the concept of destination familiarity —that is, the extent to which tourists have gained familiarity with a given destination through literature—and seeks to investigate the impact of this form of familiarity on inbound tourism to Mainland China. Employing the English fiction dataset of the Google Books corpus, the New York Times annotated corpus, and the Time magazine corpus, we construct two types of destination familiarity based on literary texts: affection-based destination familiarity and knowledge-based destination familiarity. The results from dynamic panel estimation (1994–2004) demonstrate that the higher the degree of affection-based destination familiarity with a province in the previous year, the larger the number of inbound tourists the following year. Examining the influence of literature and its consumption on tourism activities sheds light on the dynamics of sustainable tourism development in emerging markets

    DesignGPT: Multi-Agent Collaboration in Design

    Full text link
    Generative AI faces many challenges when entering the product design workflow, such as interface usability and interaction patterns. Therefore, based on design thinking and design process, we developed the DesignGPT multi-agent collaboration framework, which uses artificial intelligence agents to simulate the roles of different positions in the design company and allows human designers to collaborate with them in natural language. Experimental results show that compared with separate AI tools, DesignGPT improves the performance of designers, highlighting the potential of applying multi-agent systems that integrate design domain knowledge to product scheme design

    Joint Beamforming and Offloading Design for Integrated Sensing, Communication and Computation System

    Full text link
    Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.Comment: 5 pages, 4 figures, submitted to IEEE journals for possible publicatio

    Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis

    Get PDF
    Background and aims: Hypoglycemic agents are the primary therapeutic approach for the treatment of diabetes and have been postulated to impact pancreatic cancer (PC) incidence in diabetic patients. We conducted a meta-analysis to further evaluate and establish the associations between four common types of hypoglycemic agents [metformin, sulfonylureas, thiazolidinediones (TZDs), and insulin] and PC incidence in individuals with diabetes mellitus (DM).Methods: A comprehensive literature search of PubMed, Web of Science, Embase, and the Cochrane Library identified studies that analyzed the relationship between hypoglycemic agents and PC published between January 2012 and September 2022. Randomized control trials (RCTs), cohorts, and case–control studies were included if there was clear and evaluated defined exposure to the involved hypoglycemic agents and reported PC outcomes in patients with DM. Furthermore, reported relative risks or odds ratios (ORs) or other provided data were required for the calculation of odds ratios. Summary odds ratio estimates with a 95% confidence interval (CI) were estimated using the random-effects model. Additionally, subgroup analysis was performed to figure out the source of heterogeneity. Sensitivity analysis and publication bias detection were also performed.Results: A total of 11 studies were identified that evaluated one or more of the hypoglycemic agents, including three case–control studies and eight cohort studies. Among these, nine focused on metformin, six on sulfonylureas, seven on TZDs, and seven on insulin. Meta-analysis of the 11 observational studies reported no significant association between metformin (OR = 1.04, 95% CI 0.73–1.46) or TZDs (OR = 1.13, 95% CI 0.73–1.75) and PC incidence, while the risk of PC increased by 79% and 185% with sulfonylureas (OR = 1.79, 95% CI 1.29–2.49) and insulin (OR = 2.85, 95% CI 1.75–4.64), respectively. Considerable heterogeneity was observed among the studies and could not be fully accounted for by study design, region, or adjustment for other hypoglycemic agents.Conclusion: Sulfonylureas and insulin may increase the incidence of pancreatic cancer in diabetic patients, with varying effects observed among different ethnicities (Asian and Western). Due to significant heterogeneity across studies, further interpretation of the relationship between hypoglycemic agents and pancreatic cancer incidence in diabetic patients requires well-adjusted data and better-organized clinical trials
    • …
    corecore