126 research outputs found

    Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures

    Full text link
    Hydrogen-rich compounds are important for understanding the dissociation of dense molecular hydrogen, as well as searching for room temperature Bardeen-Cooper-Schrieffer (BCS) superconductors. A recent high pressure experiment reported the successful synthesis of novel insulating lithium polyhydrides when above 130 GPa. However, the results are in sharp contrast to previous theoretical prediction by PBE functional that around this pressure range all lithium polyhydrides (LiHn (n = 2-8)) should be metallic. In order to address this discrepancy, we perform unbiased structure search with first principles calculation by including the van der Waals interaction that was ignored in previous prediction to predict the high pressure stable structures of LiHn (n = 2-11, 13) up to 200 GPa. We reproduce the previously predicted structures, and further find novel compositions that adopt more stable structures. The van der Waals functional (vdW-DF) significantly alters the relative stability of lithium polyhydrides, and predicts that the stable stoichiometries for the ground-state should be LiH2 and LiH9 at 130-170 GPa, and LiH2, LiH8 and LiH10 at 180-200 GPa. Accurate electronic structure calculation with GW approximation indicates that LiH, LiH2, LiH7, and LiH9 are insulative up to at least 208 GPa, and all other lithium polyhydrides are metallic. The calculated vibron frequencies of these insulating phases are also in accordance with the experimental infrared (IR) data. This reconciliation with the experimental observation suggests that LiH2, LiH7, and LiH9 are the possible candidates for lithium polyhydrides synthesized in that experiment. Our results reinstate the credibility of density functional theory in description H-rich compounds, and demonstrate the importance of considering van der Waals interaction in this class of materials.Comment: 34 pages, 15 figure

    High Level of CXCR4 in Triple-Negative Breast Cancer Specimens Associated with a Poor Clinical Outcome

    Get PDF
    Despite high sensitivity to chemotherapy, the prognosis for triple-negative breast cancer (TNBC) remains poor because of its high rate of metastasis and low sensitivity to endocrine therapy. CXCR4 expression has been reported in many subtypes of human breast cancers, but it remains unknown whether CXCR4 is expressed in TNBC and whether CXCR4 expression in TNBC could be a prognostic indicator. TNBCs tissues were formalin fixed, paraffin embedded and hematoxylin-eosin (H&E) stained. Immunohistochemical staining was utilized to determine the CXCR4 expression in those specimens. Statistical analyses were performed using SPSS16.0 software to reveal the correlation of CXCR4 expression in TNBC specimens and cancer recurrence and cancer-related death. Our results showed that there was a strong association between CXCR4 overexpression and both menopause and the histological cancer grade of TNBC patients (p values were separately 0.004 and 0.001). The 5-y disease-free survival (DFS) and the 5-y overall survival (OS) were 57.69% and 58.33% for the low-CXCR4 group versus 42.11% and 44.74% for the high-CXCR4 group, respectively (p=0.031 and 0.048). CXCR4 overexpression plays an important role in triple-negative breast cancers, and may be a predictor of poor prognosis

    Raman spectroscopy characterization of structural evolution in middle-rank coals

    Get PDF
    The second coalification jump which occurred during the middle-rank led to abrupt changes of many physical and chemical properties of coal, and the change of the aggregate structure may be the fundamental reason. In order to investigate the structural evolution characteristics of middle-rank coal and its relation with the second coalification jump in detail, the structure characteristics of six middle-rank coals (Ro,max=1.10%−1.63%) that across the second coalification jump were studied by Raman spectroscopy, and the structural parameters were calculated by fitting the first-order and second-order Raman spectrum using the fitting software. The results indicated that the evolution of Raman structural parameters with Ro,max is not linear, reflecting the complexity of the structural evolution of coal. According to the evolution characteristics of Raman structural parameters, the coalification during the stage of Ro,max=1.10%−1.63% can be divided into three stages. The turning points are located near Ro,max=1.30% and Ro,max=1.50%, respectively, which are exactly equivalent to the positions of the second and the third coalification jump discovered in previous research. It indicated that the Raman structural parameters can reflect the occurrence of the coalification jump, moreover, Raman spectroscopy is an effective method to study the coal structure. The first stage is Ro,max=1.10%−1.30%, the long-chain aliphatic structures cracked and the remained shorter-chain aliphatic hydrocarbons and aliphatic substituted structures on the aromatic rings will form new alicyclic structures, which caused the branched degree increases and hindered the alignment of aromatic systems in coal. The order degree of aromatic system is thus reached the least near Ro,max=1.30%, with the smallest WG, the largest FG/D, the smallest AD/AG, the increase of AS/A1, and the significant decrease of A(2G)R/A2. In the second stage of Ro,max=1.30%−1.50%, the aromatization of the alicyclic structures formed in the previous stage resulted in an increase in the content of aromatic C—H structure and the least of amorphous carbon structure. Besides, the degree of aromatization and aromatic structural both increased, which showed that A(GR+VL+VR)/AD, A(GR+VL+VR)/AG and FG/D decreased significantly, AD/AG increased, WG and d(G-D) increased quickly. The last stage is Ro,max=1.50%−1.63%, the condensation reaction occurred between the aromatic rings formed in the second stage, leading to the reduction of A(2G)R/A2. Meanwhile, the various bridging bonds between aromatic ring systems continued to break, resulting in the formation of some small-scale aromatic structures, as evidenced by a decrease in A(2G)R/A2, a small decrease in WG, and an increase in A(GR+VL+VR)/AD and A(GR+VL+VR)/AG. These results are the basis for deeply understanding the mechanism of coalification jump and coalification

    l-Tetrahydropalmatine, an Active Component of Corydalis yanhusuo W.T. Wang, Protects against Myocardial Ischaemia-Reperfusion Injury in Rats

    Get PDF
    l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h). Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1α and VEGF were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.) enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-α (TNF-α) in myocardium were decreased by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1α and VEGF, whilst depressing iNOS-derived NO production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-α and MPO, and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-reperfusion injury

    Nonstationary Random Vibration Performance of Train-Bridge Coupling System with Vertical Track Irregularity

    No full text
    In order to study the random vibration performance of trains running on continuous beam bridge with vertical track irregularity, a time-domain framework of random analysis on train-bridge coupling system is established. The vertical rail irregularity is regarded as a random process. A multibody mass-spring-damper model is employed to represent a moving railway car and the bridge system is simulated by finite elements. By introducing the pseudo excitation algorithm into the train-bridge interaction dynamic system, expressions of the mean value, standard deviation, and power spectral density of the nonstationary random dynamic responses of bridge and vehicles are derived. Monte-Carlo simulations are implemented to validate the presented method. A comprehensive analysis of the train-bridge coupling system with vertical track irregularity is conducted focusing on the effect of the randomness of the vertical rail irregularity on the dynamic behavior of the running train and the three-span continuous concrete bridge. Moreover, stochastic characteristics of the indicator for assessing the safety and the riding quality of the railway cars running on continuous beam bridge are carried out, which may be a useful reference in the dynamic design of the bridge

    Application of the Differential Evolutionary Algorithm to the Estimation of Pipe Embedding Parameters

    No full text
    The time-delay estimation (TDE) method is the primary method for predicting leakage locations in buried water distribution pipelines. The accuracy of TDE depends on the acoustic speed and attenuation of the leakage signal propagating along the pipeline. The analytical prediction model is the typical approach for obtaining the propagation speed and attenuation of leakage waves. However, the embedding parameters of the buried pipe in this model must be measured using soil tests, which are very difficult, costly, and time-consuming. These factors restrict the application of the TDE method in pinpointing pipeline leakage. A method for inverse identification of pipe embedding parameters using discrete wavenumbers obtained in field testing is presented in this paper, and the differential evolution algorithm is introduced as an optimization solution. A field experiment is conducted to validate the method, and the test wavenumbers are measured in a cast-iron pipeline. The estimated sensitive parameters in the analytical model using the method are soil elastic modulus, Poisson’s ratio, and pipe–soil contact coefficient, while the conventional soil test is used to measure the soil density due to the character of the optimization algorithm and the soil properties. The application effects show that the estimated parameters are close to those measured from a conventional soil test. The wave speed based on the estimated parameters was an excellent match for the on-site test in the engineering application. This work provides a less costly and more straightforward way to apply the TDE method for leak localization in buried pipelines