5,332 research outputs found
Multi-stage Multi-recursive-input Fully Convolutional Networks for Neuronal Boundary Detection
In the field of connectomics, neuroscientists seek to identify cortical
connectivity comprehensively. Neuronal boundary detection from the Electron
Microscopy (EM) images is often done to assist the automatic reconstruction of
neuronal circuit. But the segmentation of EM images is a challenging problem,
as it requires the detector to be able to detect both filament-like thin and
blob-like thick membrane, while suppressing the ambiguous intracellular
structure. In this paper, we propose multi-stage multi-recursive-input fully
convolutional networks to address this problem. The multiple recursive inputs
for one stage, i.e., the multiple side outputs with different receptive field
sizes learned from the lower stage, provide multi-scale contextual boundary
information for the consecutive learning. This design is
biologically-plausible, as it likes a human visual system to compare different
possible segmentation solutions to address the ambiguous boundary issue. Our
multi-stage networks are trained end-to-end. It achieves promising results on
two public available EM segmentation datasets, the mouse piriform cortex
dataset and the ISBI 2012 EM dataset.Comment: Accepted by ICCV201
- …