9 research outputs found

    H<sub>2</sub> Reduction Annealing Induced Phase Transition and Improvements on Redox Durability of Pt Cluster-Decorated Cu@Pd Electrocatalysts in Oxygen Reduction Reaction

    No full text
    Hierarchical structures in shell with transition metal underneath is a promising design for high-performance and low-cost heterogeneous nanocatalysts (NCs). Such a design enables the optimum extent of synergetic effects in NC surface. It facilitates intermediate reaction steps and, therefore, boosts activity of NC in oxygen reduction reaction (ORR). In this study, carbon nanotube (CNT)-supported ternary metallic NC comprising Cucluster-in-Pdcluster nanocrystal and surface decoration of atomic Pt clusters (14 wt %) is synthesized by using the wet chemical reduction method with sequence and reaction time controls. By annealing in H2 environment (H2/N2 = 9:1, 10 sccm) at 600 K for 2 h, specific activity of Cu@Pd/Pt is substantially improved by ∼2.0-fold as compared to that of the pristine sample and commercial Pt catalysts. By cross-referencing results of electron microscopic, X-ray spectroscopic, and electrochemical analyses, we demonstrated that reduction annealing turns ternary NC into complex of Cu3Pt alloy and CuxPd1–x alloy. Such a transition preserves Pt and Pd in metallic phases, therefore improving the activity by ∼29% and the stability of NC in an accelerated degradation test (ADT) as compared to those of pristine Cu@Pd/Pt in 36 000 cycles at 0.85 V (vs RHE). This study presents robust H2 annealing for structure stabilization of NC and systematic characterizations for rationalization of the corresponding mechanisms. These results provide promising scenarios for facilitation of heterogeneous NC in ORR applications

    Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice

    No full text
    We report the transport and trapping behavior of 100 and 500 nm diameter nanospheres in a plasmon-enhanced two-dimensional optical lattice. An optical potential is created by a two-dimensional square lattice of gold nanostructures, illuminated by a Gaussian beam to excite plasmon resonance. The nanoparticles can be guided, trapped, and arranged using this optical potential. Stacking of 500 nm nanospheres into a predominantly hexagonal closed pack crystalline structure under such a potential is also reported

    Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice

    No full text
    We report the transport and trapping behavior of 100 and 500 nm diameter nanospheres in a plasmon-enhanced two-dimensional optical lattice. An optical potential is created by a two-dimensional square lattice of gold nanostructures, illuminated by a Gaussian beam to excite plasmon resonance. The nanoparticles can be guided, trapped, and arranged using this optical potential. Stacking of 500 nm nanospheres into a predominantly hexagonal closed pack crystalline structure under such a potential is also reported

    Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice

    No full text
    We report the transport and trapping behavior of 100 and 500 nm diameter nanospheres in a plasmon-enhanced two-dimensional optical lattice. An optical potential is created by a two-dimensional square lattice of gold nanostructures, illuminated by a Gaussian beam to excite plasmon resonance. The nanoparticles can be guided, trapped, and arranged using this optical potential. Stacking of 500 nm nanospheres into a predominantly hexagonal closed pack crystalline structure under such a potential is also reported

    Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice

    No full text
    We report the transport and trapping behavior of 100 and 500 nm diameter nanospheres in a plasmon-enhanced two-dimensional optical lattice. An optical potential is created by a two-dimensional square lattice of gold nanostructures, illuminated by a Gaussian beam to excite plasmon resonance. The nanoparticles can be guided, trapped, and arranged using this optical potential. Stacking of 500 nm nanospheres into a predominantly hexagonal closed pack crystalline structure under such a potential is also reported

    Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice

    No full text
    We report the transport and trapping behavior of 100 and 500 nm diameter nanospheres in a plasmon-enhanced two-dimensional optical lattice. An optical potential is created by a two-dimensional square lattice of gold nanostructures, illuminated by a Gaussian beam to excite plasmon resonance. The nanoparticles can be guided, trapped, and arranged using this optical potential. Stacking of 500 nm nanospheres into a predominantly hexagonal closed pack crystalline structure under such a potential is also reported

    Programming ORR Activity of Ni/NiO<i><sub>x</sub></i>@Pd Electrocatalysts via Controlling Depth of Surface-Decorated Atomic Pt Clusters

    No full text
    Carbon nanotube supported ternary metallic nanocatalysts (NCs) comprising Ni<sub>core</sub>–Pd<sub>shell</sub> structure and Pt atomic scale clusters in shell (namely, Ni@Pd/Pt) are synthesized by using wet chemical reduction method with reaction time control. Effects of Pt<sup>4+</sup> adsorption time and Pt/Pd composition ratios on atomic structure with respect to electrochemical performances of experimental NCs are systematically investigated. By cross-referencing results of high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption, density functional theoretical calculations, and electrochemical analysis, we demonstrate that oxygen reduction reaction (ORR) activity is dominated by depth and distribution of Pt clusters in a Ni@Pd/Pt NC. For the optimum case (Pt<sup>4+</sup> adsorption time = 2 h), specific activity of Ni@Pd/Pt is 0.732 mA cm<sup>–2</sup> in ORR. Such a value is 2.8-fold higher as compared to that of commercial J.M.-Pt/C at 0.85 V (vs reversible hydrogen electrode). Such improvement is attributed to the protection of defect sites from oxide reaction in the presence of Pt clusters in NC surface. When adsorption time is 10 s, Pt clusters tends to adsorb in the Ni@Pd surface. A substantially increased galvanic replacement between Pt<sup>4+</sup> ion and Pd/Ni metal is found to result in the formation of Ni@Pd shell with Pt cluster in the interface when adsorption time is 24 h. Both structures increase the surface defect density and delocalize charge density around Pt clusters, thereby suppressing the ORR activity of Ni@Pd/Pt NCs

    Hydrogen Bond Strength-Mediated Self-Assembly of Supramolecular Nanogels for Selective and Effective Cancer Treatment

    No full text
    This study provides a significant contribution to the development of multiple hydrogen-bonded supramolecular nanocarrier systems by demonstrating that controlling the hydrogen bond strength within supramolecular polymers represents a crucial factor to tailor the drug delivery performance and enhance the effectiveness of cancer therapy. Herein, we successfully developed two kinds of poly­(ethylene glycol)-based telechelic polymers Cy-PEG and UrCy-PEG having self-constituted double and quadruple hydrogen-bonding cytosine (Cy) and ureido-cytosine (UrCy) end-capped groups, respectively, which directly assemble into spherical nanogels with a number of interesting physical characteristics in aqueous solutions. The UrCy-PEG nanogels containing quadruple hydrogen-bonded UrCy dimers exhibited excellent long-term structural stability in a serum-containing biological medium, whereas the double hydrogen-bonded Cy moieties could not maintain the structural integrity of the Cy-PEG nanogels. More importantly, after the drug encapsulation process, a series of in vitro experiments clearly confirmed that drug-loaded UrCy-PEG nanogels induced selective apoptotic cell death in cancer cells without causing significant cytotoxicity to healthy cells, while drug-loaded Cy-PEG nanogels exerted nonselective cytotoxicity toward both cancer and normal cells, indicating that increasing the strength of hydrogen bonds in nanogels plays a key role in enhancing the selective cellular uptake and cytotoxicity of drugs and the subsequent induction of apoptosis in cancer cells
    corecore