221 research outputs found

    F-manifolds and geometry of information

    Full text link
    The theory of FF-manifolds, and more generally, manifolds endowed with commutative and associative multiplication of their tangent fields, was discovered and formalised in various models of quantum field theory involving algebraic and analytic geometry, at least since 1990's. The focus of this paper consists in the demonstration that various spaces of probability distributions defined and studied at least since 1960's also carry natural structures of FF-manifolds. This fact remained somewhat hidden in various domains of the vast territory of models of information storing and transmission that are briefly surveyed here

    Reconstruction of universal Drinfeld twists from representations

    Full text link
    Universal Drinfeld twists are inner automorphisms which relate the coproduct of a quantum enveloping algebra to the coproduct of the undeformed enveloping algebra. Even though they govern the deformation theory of classical symmetries and have appeared in numerous applications, no twist for a semi-simple quantum enveloping algebra has ever been computed. It is argued that universal twists can be reconstructed from their well known representations. A method to reconstruct an arbitrary element of the enveloping algebra from its irreducible representations is developed. For the twist this yields an algebra valued generating function to all orders in the deformation parameter, expressed by a combination of basic and ordinary hypergeometric functions. An explicit expression for the universal twist of su(2) is given up to third order.Comment: 24 page

    Zipf's Law and Avoidance of Excessive Synonymy

    Full text link
    Zipf's law states that if words of language are ranked in the order of decreasing frequency in texts, the frequency of a word is inversely proportional to its rank. It is very robust as an experimental observation, but to date it escaped satisfactory theoretical explanation. We suggest that Zipf's law may arise from the evolution of word semantics dominated by expansion of meanings and competition of synonyms.Comment: 47 pages; fixed reference list missing in v.

    The symplectic origin of conformal and Minkowski superspaces

    Get PDF
    Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in d=3,4,6d=3,4,6 and 1010 dimensions is also deeply related to the normed division algebras. In this paper we want to show the link between the conformal group and certain types of symplectic transformations over division algebras. Inspired by this observation we then propose a new\,realization of the real form of the 4 dimensional conformal and Minkowski superspaces we obtain, respectively, as a Lagrangian supermanifold over the twistor superspace C41\mathbb{C}^{4|1} and a big cell inside it. The beauty of this approach is that it naturally generalizes to the 6 dimensional case (and possibly also to the 10 dimensional one) thus providing an elegant and uniform characterization of the conformal superspaces.Comment: 15 pages, references added, minor change

    The Grothendieck Group of a Quantum Projective Space Bundle

    Full text link
    We compute the Grothendieck group K_0 of non-commutative analogues of quantum projective space bundles. Our results specialize to give the Grothendieck groups of non-commutative analogues of projective spaces, and specialize to recover the Grothendieck group of a usual projective space bundle over a regular noetherian separated scheme. As an application we develop an intersection theory for the quantum ruled surfaces defined by Van den Bergh.Comment: This paper is being replaced so I can correct the metadata, the title! I (Paul) spelled Grothendieck's name incorrectly. The paper is being reposted with the journal reference and doi added to the metadat

    Graded Majorana spinors

    Full text link
    In many mathematical and physical contexts spinors are treated as Grassmann odd valued fields. We show that it is possible to extend the classification of reality conditions on such spinors by a new type of Majorana condition. In order to define this graded Majorana condition we make use of pseudo-conjugation, a rather unfamiliar extension of complex conjugation to supernumbers. Like the symplectic Majorana condition, the graded Majorana condition may be imposed, for example, in spacetimes in which the standard Majorana condition is inconsistent. However, in contrast to the symplectic condition, which requires duplicating the number of spinor fields, the graded condition can be imposed on a single Dirac spinor. We illustrate how graded Majorana spinors can be applied to supersymmetry by constructing a globally supersymmetric field theory in three-dimensional Euclidean space, an example of a spacetime where standard Majorana spinors do not exist.Comment: 16 pages, version to appear in J. Phys. A; AFK previously published under the name A. F. Schunc

    Harmonic Superspaces in Low Dimensions

    Full text link
    Harmonic superspaces for spacetimes of dimension d3d\leq 3 are constructed. Some applications are given.Comment: 16, kcl-th-94-15. Two further references have been added (12 and 13) and a few typographical errors have been correcte

    The structure of 2D semi-simple field theories

    Full text link
    I classify all cohomological 2D field theories based on a semi-simple complex Frobenius algebra A. They are controlled by a linear combination of kappa-classes and by an extension datum to the Deligne-Mumford boundary. Their effect on the Gromov-Witten potential is described by Givental's Fock space formulae. This leads to the reconstruction of Gromov-Witten invariants from the quantum cup-product at a single semi-simple point and from the first Chern class, confirming Givental's higher-genus reconstruction conjecture. The proof uses the Mumford conjecture proved by Madsen and Weiss.Comment: Small errors corrected in v3. Agrees with published versio

    A Note on the Gauge Equivalence between the Manin-Radul and Laberge-Mathieu Super KdV Hierarchies

    Full text link
    The gauge equivalence between the Manin-Radul and Laberge-Mathieu super KdV hierarchies is revisited. Apart from the Inami-Kanno transformation, we show that there is another gauge transformation which also possess the canonical property. We explore the relationship of these two gauge transformations from the Kupershmidt-Wilson theorem viewpoint and, as a by-product, obtain the Darboux-Backlund transformation for the Manin-Radul super KdV hierarchy. The geometrical intepretation of these transformations is also briefly discussed.Comment: 8 pages, revtex, 1 figur
    corecore