2 research outputs found
Morphological change in peristaltic crawling motion of a narrow pipe inspection robot inspired by earthworm’s locomotion
<p>Infrastructure pipes require inspection in order to prevent accidents. However, it is difficult to inspect a 1-in-diameter gas pipe because it is long, narrow and complicated. Therefore, an earthworm-type robot was developed to inspect this 1-in pipe. The robot moved by peristaltic crawling with pneumatic artificial muscles and displayed its suitability as a 1-in pipe inspection robot in experiments. However, its speed was extremely slow to be practically utilized. A major cause for this is the small distance covered in a single motion of the robot. Therefore, in this study, we developed an axial extension actuator to increase the moving distance of the robot in a single motion. Furthermore, we installed this new actuator on our robot and made it possible for the robot to change the morphological motion in peristaltic crawling. The experiments with straight and elbow pipes ascertained the importance of morphological change in peristaltic crawling for increasing the speed of the robot. Moreover, in a continuous elbow pipe, the velocity of the proposed robot was 5.5Â mm/s, which is 1.3 times faster than that of the conventional robot. Consequently, we confirmed that the speed of the proposed robot was sufficiently fast for inspecting a 1-in pipe.</p
Application of wireless inertial measurement units and EMG sensors for studying deglutition - preliminary results
Different types of sensors are being used to study deglutition and mastication. These often suffer from problems related to portability, cost, reliability, comfort etc. that make it difficult to use for long term studies. An inertial measurement based sensor seems a good fit in this application; however its use has not been explored much for the specific application of deglutition research. In this paper, we present a system comprised of an IMU and EMG sensor that are integrated together as a single system. With a preliminary experiment, we determine that the system can be used for measuring the head-neck posture during swallowing in addition to other parameters during the swallowing phase. The EMG sensor may not always be a reliable source of physiological data especially for small clustered muscles like the ones responsible for swallowing. In this case, we explore the possibility of using gyroscopic data for the recognition of deglutition events