734 research outputs found

    Changes in fibre curvature during the processing of wool and alpaca fibres and their blends

    Full text link
    This paper studied the wool and alpaca fibre curvature and its variation during the fibre processing. It revealed the effect of wool fibre crimp on the cohesion properties of alpaca and wool blended slivers. Different wool and alpaca tops were blended via a number of gillings, and the role of wool fibre curvature in alpaca/wool blend processing has also been investigated. During the wool fibre processing, fibre curvature tended to diminish gradually from scoured fibre to top. Blending wool with alpaca fibres improved the cohesion properties of the blended sliver, compared with pure alpaca slivers. For a high ratio of alpaca component in the blend, a high-crimp wool should be used to achieve good sliver cohesion.<br /

    Characterization and application of objective pilling classification to patterned fabrics

    Full text link
    Previously, the authors proposed a new, simple method of frequency domain analysis based on the two-dimensional discrete wavelet transform to objectively measure the pilling intensity in sample fabric images. The method was further characterized, and the results obtained indicate that standard deviation and variance are the most appropriate measures of the dispersion of wavelet details coefficients for analysis, that the relationship between wavelet analysis scale and fabric inter-yarn pitch was empirically confirmed, and, that fabrics with random patterns do not appear to impact on the effectiveness of the analysis method. <br /

    Determining residual gum content of bast fibres

    Full text link

    Evaluation of the fineness of degummed bast fibers

    Get PDF
    Fiber fineness characteristics are important for yarn production and quality. In this paper, degummed bast fibers such as hemp, flax and ramie have been examined with the Optical Fiber Diameter Analyzer (OFDA100 and OFDA2000) systems for fiber fineness, in comparison with the conventional image analysis and the Wira airflow tester. The correlation between the results from these measurements was analysed. The results indicate that there is a significant linear co-relation between the fiber fineness measurement results obtained from those different systems. In addition, the mean fiber width and its coefficient of variation obtained from the OFDA100 system are smaller than those obtained from the OFDA2000 system, due to the difference in sample preparation methods. The OFDA2000 system can also measure the fiber fineness profile along the bast fiber plants, which can be useful for plant breeding. <br /

    Investigation of fibre tension and fibre breakage in siumulated fibre opening processes

    Full text link
    To reveal the mechanism of fibre damage and breakage in the fibre opening processes, the fibre tension during the interaction between a fibre and a pinned beater has been investigated. Details of the interacting force variations and incident of fibre breakage have been closely examined. Many factors which influence the fibre/pin interacting force have been elucidated. The results highlight the causes of fibre damage and breakage by fibre/pin interactions.<br /

    Correlation between optical and SEM measurements of wool cortical cell size

    Full text link
    Wool fibres consist of micro to nano scale protein constituents that could be used for innovative applications. While techniques for extracting these constituents or making wool fibres into organic powders have been developed, effectively dispersing the particles and accurately determining their size has been difficult in practice. In this study, an ultrasonic method was employed to disperse cortical cells extracted from wool fibres into animmersion oil or ethanol. Specimens of the cortical cells were then observed under optical microscopy and scanning electron microscopy, respectively. Cell length and maximum cell diameter were measured to quantify the cell size. The results suggest significant discrepancies exist in the cortical cell size obtained from the two different measurement techniques. The maximum diameter of wool cortical cells obtained from the optical microscope was much larger than that from the scanning electron microscope, while the length was much shorter. A correction factor is given so that cortical cell size obtained from the two measurement techniques can be compared.<br /

    Nanoparticle coatings for UV protective textiles

    Full text link
    As the intensity of UV radiation increases every year, effective methods to block UV rays to protect human skin, plastics, timber and other polymer materials are urgently sought. Textiles serve as important materials for UV protection in many applications. The utilisation of nanoparticles to textile materials has been the object of several studies aimed at producing finished fabrics with different performances. This article reviews the recent advancement in the field of UV blocking textiles and fibers that are functionalised with nanostructured surface coatings. Different types of UV blocking agents are discussed and various examples of UV blocking textiles utilising ZnO and TiO2 are presented. Future challenges such as wash-fastness and photocatalysis are also discussed.<br /

    Modified two-strand spinning (part III : yarn performance)

    Full text link
    In this final part of the series, modified two-strand spun yarns are produced on a modified Sirospun system. The yarns are then evaluated against conventional Sirospun yarns.<br /

    Objective assessment of pilling of nonwoven fabrics using the two dimensional discrete wavelet transform

    Full text link
    Fabric pilling is a serious problem for the apparel industry, causing an unsightly appearance and premature wear. Woolen products are particularly prone to pilling. Recently, a process for production of woolen nonwoven apparel fabrics has been commercialized in Australia, and may lead to new markets for Australian wool. However, the success of such nonwoven fabrics will partly rely on their propensity to pill. A key element in the control of fabric pilling is the evaluation of resistance to pilling by testing. Resistance to pilling is normally tested in the laboratory by processes that simulate accelerated wear, followed by a manual assessment of the degree of pilling by an expert based on a visual comparison of the sample to a set of test images. To bring more objectivity into the pilling rating process, a number of automated systems based on image analysis have been developed. The authors previously proposed a new method of image analysis based on the two-dimensional discrete wavelet transform to objectively measure the pilling intensity for woven fabrics. This paper presents preliminary work in extending this method to nonwoven fabrics.<br /

    Predicting the pilling tendency of wool knits

    Full text link
    This work investigates the application of artificial neural network modeling (ANN) to model the relationships between fiber, yarn, and fabric properties and the pilling propensity of single jersey and rib pure wool knitted fabrics based on the ICI Pilling Box method. Validation of the model on an independent validation data set suggests that the accurate prediction of pilling propensity is possible with the best performing model achieving a correlation with the subjectively rated pilling grades of approximately 85%. Importantly, it is also illustrated that a larger training set can lead to a marked improvement in the accuracy of predictions. <br /
    • …
    corecore