3 research outputs found
DataSheet_1_Exploring the key factors affecting the seasonal variation of phytoplankton in the coastal Yellow Sea.doc
Marine phytoplankton play crucial roles in the ocean’s biological pump and have great impacts on global biogeochemical cycles, yet the knowledge of environmental variables controlling their seasonal dynamics needs to be improved further, especially in the coastal ecosystems. In order to explore the determinants affecting the seasonal variation of phytoplankton, here we conducted three surveys during spring, summer and autumn along the coastal Yellow Sea. Among the phytoplankton community, 49 species of diatoms and 9 species of dinoflagellates were observed in spring, 63 species of diatoms and 10 species of dinoflagellates in summer, and 62 species of diatoms and 11 species of dinoflagellates in autumn. These results thus suggested that there were obvious differences in the number of species across the three seasons, of which diatoms were the most diverse group, followed by dinoflagellates. Additionally, diatoms were the most dominant species of the phytoplankton community and varied largely during different seasons. According to the redundancy analysis, the abundance of phytoplankton community was mainly related to water temperature and dissolved inorganic nitrogen (DIN) during the three seasons, indicating that water temperature and DIN could be the key factors controlling the seasonal variability of phytoplankton community along the coastal Yellow Sea. Also, significant correlations were observed between phytoplankton abundance and heavy metals Zn, As, and Hg during the three seasons, suggesting that these metals also had potential influences on the seasonal dynamics of phytoplankton community in the coastal Yellow Sea.</p
Image_1_Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection.TIF
Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.</p
Image_2_Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection.TIF
Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.</p