1 research outputs found

    On a Problem of Harary and Schwenk on Graphs with Distinct Eigenvalues

    Full text link
    Harary and Schwenk posed the problem forty years ago: Which graphs have distinct adjacency eigenvalues? In this paper, we obtain a necessary and sufficient condition for an Hermitian matrix with simple spectral radius and distinct eigenvalues. As its application, we give an algebraic characterization to the Harary-Schwenk's problem. As an extension of their problem, we also obtain a necessary and sufficient condition for a positive semidefinite matrix with simple least eigenvalue and distinct eigenvalues, which can provide an algebraic characterization to their problem with respect to the (normalized) Laplacian matrix.Comment: 11 page
    corecore