35 research outputs found
Optical spin pumping induced pseudo-magnetic field in two dimensional heterostructures
Two dimensional heterostructures are likely to provide new avenues for the
manipulation of magnetization that is crucial for spintronics or
magnetoelectronics. Here, we demonstrate that optical spin pumping can generate
a large effective magnetic field in two dimensional MoSe2/WSe2
heterostructures. We determine the strength of the generated field by
polarization-resolved measurement of the interlayer exciton photoluminescence
spectrum: the measured splitting exceeding 10 milli-electron volts (meV)
between the emission originating from the two valleys corresponds to an
effective magnetic field of ~ 30 T. The strength of this optically induced
field can be controlled by the excitation light polarization. Our finding opens
up new possibilities for optically controlled spintronic devices based on van
der Waals heterostructures
Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation
Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm[superscript −1] under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified by graphene dots.National Natural Science Foundation (China) (Nos. 21233001, 50972001, and 21129001)China. Ministry of Science and Technology (Nos. 2011YQ0301240201 and 2011CB932601)Beijing Natural Science Foundation (No. 2132056
Electrohydraulic lithotripsy through endoscopic retrograde cholangiopancreatography combined with SpyGlass in the treatment of complex pancreatic duct stones: A case report and literature review
The incidence of pancreatic duct stones (PDS) is less than 1%. After the formation of stones, the lumen of the pancreatic duct is blocked, and the pancreatic juice cannot be discharged smoothly, resulting in the impairment of the internal and external secretions of the pancreas. Several national guidelines now recommend endoscopic retrograde cholangiopancreatography (ERCP) as the treatment for PDS. The emergence of SpyGlass makes it possible to visualize the ERCP blind area of the pancreatic system directly. Electrohydraulic lithotripsy (EHL) under SpyGlass can crush large and pressure-resistant stones into smaller fragments, significantly improving the success of the endoscopic treatment of large stones. Here, we report a patient presented with acute alcohol-associated pancreatitis, found to have PDS on imaging, who underwent ERCP combined with SpyGlass (EHL), avoiding surgery, reducing trauma, and being discharged from the hospital with a rapid recovery. Therefore, endoscopic therapy is effective and safe for PDS patients. The combination therapy of this patient is the first use of SpyGlass for PDS in our centre, which marks a new stage in the application of endoscopic therapy for pancreatic diseases
Complete remission in a pretreated, microsatellite-stable, KRAS-mutated colon cancer patient after treatment with sintilimab and bevacizumab and platinum-based chemotherapy: a case report and literature review
Metastatic colon cancer remains an incurable disease, and it is difficult for existing treatments to achieve the desired clinical outcome, especially for colon cancer patients who have received first-line treatment. Although immune checkpoint inhibitors (ICIs) have demonstrated durable clinical efficacy in a variety of solid tumors, their response requires an inflammatory tumor microenvironment. However, microsatellite-stable (MSS) colon cancer, which accounts for the majority of colorectal cancers, is a cold tumor that does not respond well to ICIs. Combination regimens open the door to the utility of ICIs in cold tumors. Although combination therapies have shown their advantage even for MSS colon cancer, it remains unclear whether combination therapies show their advantage in patients with pretreated metastatic colon cancer. We report a patient who has achieved complete remission and good tolerance with sintilimab plus bevacizumab and platinum-based chemotherapy after postoperative recurrence. The patient had KRAS mutation and MSS-type colon cancer, and his PD-1+CD8+ and CD3−CD19−CD14+CD16−HLA-DR were both positive. He has achieved a progression-free survival of 43 months and is still being followed up at our center. The above results suggest that this therapeutic regimen is a promising treatment modality for the management of pretreated, MSS-type and KRAS-mutated metastatic colorectal cancer although its application to the general public still needs to be validated in clinical trials
Construction of a cross-species cell landscape at single-cell level.
Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging
The design and implementation of the [mu]Modelica compiler /
Modelica is a recently developed object-oriented language for physical systems modeling. It is a modern language built on non-causal modeling with mathematical equations and object-oriented constructs.An open source research prototype compiler for muModelica, a subset of Modelica, is presented. The compiler takes textual Modelica source as input, translates it into flat Modelica, then performs a series of symbolic transformations on the differential-algebraic equations, most notably, assigning causality, and generates input suitable for processing by a numerical simulator such as Octave.Design and implementation issues of the muModelica compiler are discussed in some detail in this thesis. These issues include the general architecture of the compiler, semantic analysis, formula manipulation, and code generation. Some advanced formula manipulation techniques are also studied, and are proposed to be implemented as future work
Charge-Induced Second-Harmonic Generation in Bilayer WSe2
Controlling nonlinear light-matter interaction is important from fundamental science point
of view as well as a basis for future optoelectronic devices1,2. Recent advances in twodimensional
crystals have created opportunities to manipulate nonlinear processes
electrically3-8. Here we report a strong second-harmonic generation (SHG) in a 2D WSe2
bilayer crystal caused by a back gate field. This unusual process takes place only when the
gate polarity causes charge accumulation rather than depletion. Analysis based on bondcharge
model traces the origin of SHG to the non-uniform field distribution within a single
monolayer, caused by the accumulated sub-monolayer screening charge in the tungsten
plane. We name this phenomenon charge-induced SHG (CHISHG), which is fundamentally
different from the field- or current-induced SHG3-11. Our findings provide a potentially
valuable technique for understanding and noninvasive probing of charge and current
distributions in future low dimensional electronic devices.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio
Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers
Modulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10–100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump–probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio
An improvement of the Space-Time Image Velocimetry combined with a new denoising method for estimating river discharge
The Space-Time Image Velocimetry (STIV) is a time-averaged velocity measurement method, which takes river surface images as the analysis object, and detects the Main Orientation of Texture (MOT) in a generated Space-Time Image (STI) to obtain one-dimensional velocities on the water surface. The STIV has great potential in real-time monitoring of river flow owing to its high spatial resolution and low time complexity. However, the generated STI contains a lot of noise and interference texture, which is inevitable in practical applications. The practicality of the STIV is severely limited by the low-quality STI. To solve this problem, a denoising method based on the filtering technology is proposed and combined with different texture detection algorithms in this paper. The accuracy of this method is verified through a comparative field experiment with an impellor-style current meter. The experimental results show: (1) By using this new denoising method, the robustness and accuracy of the STIV are significantly improved no matter what kind of texture detection algorithm is adopted; (2) Among all the texture detection algorithms, the FFT-based STIV combined with the new denoising method performs best. The relative errors of the surface velocities are controlled within 6%, and the relative errors of the discharges are controlled within ±4%
Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures
Transition metal dichalcogenides have valley degree of freedom, which features optical selection rule and spin-valley locking, making them promising for valleytronics devices and quantum computation. For either application, a long valley polarization lifetime is crucial. Previous results showed that it is around picosecond in monolayer excitons, nanosecond for local excitons and tens of nanosecond for interlayer excitons. Here we show that the dark excitons in two-dimensional heterostructures provide a microsecond valley polarization memory thanks to the magnetic field induced suppression of valley mixing. The lifetime of the dark excitons shows magnetic field and temperature dependence. The long lifetime and valley polarization lifetime of the dark exciton in two-dimensional heterostructures make them promising for long-distance exciton transport and macroscopic quantum state generations.ASTAR (Agency for Sci., Tech. and Research, S’pore)MOE (Min. of Education, S’pore)NRF (Natl Research Foundation, S’pore)Published versio