481 research outputs found
Distance-based Protein Folding Powered by Deep Learning
Contact-assisted protein folding has made very good progress, but two
challenges remain. One is accurate contact prediction for proteins lack of many
sequence homologs and the other is that time-consuming folding simulation is
often needed to predict good 3D models from predicted contacts. We show that
protein distance matrix can be predicted well by deep learning and then
directly used to construct 3D models without folding simulation at all. Using
distance geometry to construct 3D models from our predicted distance matrices,
we successfully folded 21 of the 37 CASP12 hard targets with a median family
size of 58 effective sequence homologs within 4 hours on a Linux computer of 20
CPUs. In contrast, contacts predicted by direct coupling analysis (DCA) cannot
fold any of them in the absence of folding simulation and the best CASP12 group
folded 11 of them by integrating predicted contacts into complex,
fragment-based folding simulation. The rigorous experimental validation on 15
CASP13 targets show that among the 3 hardest targets of new fold our
distance-based folding servers successfully folded 2 large ones with <150
sequence homologs while the other servers failed on all three, and that our ab
initio folding server also predicted the best, high-quality 3D model for a
large homology modeling target. Further experimental validation in CAMEO shows
that our ab initio folding server predicted correct fold for a membrane protein
of new fold with 200 residues and 229 sequence homologs while all the other
servers failed. These results imply that deep learning offers an efficient and
accurate solution for ab initio folding on a personal computer
MRFalign: Protein Homology Detection through Alignment of Markov Random Fields
Sequence-based protein homology detection has been extensively studied and so
far the most sensitive method is based upon comparison of protein sequence
profiles, which are derived from multiple sequence alignment (MSA) of sequence
homologs in a protein family. A sequence profile is usually represented as a
position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and
accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This
paper presents a new homology detection method MRFalign, consisting of three
key components: 1) a Markov Random Fields (MRF) representation of a protein
family; 2) a scoring function measuring similarity of two MRFs; and 3) an
efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning
two MRFs. Compared to HMM that can only model very short-range residue
correlation, MRFs can model long-range residue interaction pattern and thus,
encode information for the global 3D structure of a protein family.
Consequently, MRF-MRF comparison for remote homology detection shall be much
more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that
MRFalign outperforms several popular HMM or PSSM-based methods in terms of both
alignment accuracy and remote homology detection and that MRFalign works
particularly well for mainly beta proteins. For example, tested on the
benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM
succeed on 48% and 52% of proteins, respectively, at superfamily level, and on
15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign
succeeds on 57.3% and 42.5% of proteins at superfamily and fold level,
respectively. This study implies that long-range residue interaction patterns
are very helpful for sequence-based homology detection. The software is
available for download at http://raptorx.uchicago.edu/download/.Comment: Accepted by both RECOMB 2014 and PLOS Computational Biolog
- …