1,270 research outputs found
Recommended from our members
Finding High-Dimensional D-OptimalDesigns for Logistic Models via Differential Evolution
D-optimal designs are frequently used in controlled experiments to obtain the most accurateestimate of model parameters at minimal cost. Finding them can be a challenging task, especially whenthere are many factors in a nonlinear model. As the number of factors becomes large and interact withone another, there are many more variables to optimize and the D-optimal design problem becomes highdimensionaland non-separable. Consequently, premature convergence issues arise. Candidate solutions gettrapped in local optima and the classical gradient-based optimization approaches to search for the D-optimaldesigns rarely succeed. We propose a specially designed version of differential evolution (DE) which is arepresentative gradient-free optimization approach to solve such high-dimensional optimization problems.The proposed specially designed DE uses a new novelty-based mutation strategy to explore the variousregions in the search space. The exploration of the regions will be carried out differently from the previouslyexplored regions and the diversity of the population can be preserved. The proposed novelty-based mutationstrategy is collaborated with two common DE mutation strategies to balance exploration and exploitationat the early or medium stage of the evolution. Additionally, we adapt the control parameters of DE as theevolution proceeds. Using logistic models with several factors on various design spaces as examples, oursimulation results show our algorithm can find D-optimal designs efficiently and the algorithm outperformsits competitors. As an application, we apply our algorithm and re-design a 10-factor car refueling experimentwith discrete and continuous factors and selected pairwise interactions. Our proposed algorithm was able toconsistently outperform the other algorithms and find a more efficient D-optimal design for the problem
Quasi-SLCA based Keyword Query Processing over Probabilistic XML Data
The probabilistic threshold query is one of the most common queries in
uncertain databases, where a result satisfying the query must be also with
probability meeting the threshold requirement. In this paper, we investigate
probabilistic threshold keyword queries (PrTKQ) over XML data, which is not
studied before. We first introduce the notion of quasi-SLCA and use it to
represent results for a PrTKQ with the consideration of possible world
semantics. Then we design a probabilistic inverted (PI) index that can be used
to quickly return the qualified answers and filter out the unqualified ones
based on our proposed lower/upper bounds. After that, we propose two efficient
and comparable algorithms: Baseline Algorithm and PI index-based Algorithm. To
accelerate the performance of algorithms, we also utilize probability density
function. An empirical study using real and synthetic data sets has verified
the effectiveness and the efficiency of our approaches
Adaptive service discovery on service-oriented and spontaneous sensor systems
Service-oriented architecture, Spontaneous networks, Self-organisation, Self-configuration, Sensor systems, Social patternsNatural and man-made disasters can significantly impact both people and environments. Enhanced effect can be achieved through dynamic networking of people, systems and procedures and seamless integration of them to fulfil mission objectives with service-oriented sensor systems. However, the benefits of integration of services will not be realised unless we have a dependable method to discover all required services in dynamic environments. In this paper, we propose an Adaptive and Efficient Peer-to-peer Search (AEPS) approach for dependable service integration on service-oriented architecture based on a number of social behaviour patterns. In the AEPS network, the networked nodes can autonomously support and co-operate with each other in a peer-to-peer (P2P) manner to quickly discover and self-configure any services available on the disaster area and deliver a real-time capability by self-organising themselves in spontaneous groups to provide higher flexibility and adaptability for disaster monitoring and relief
Person Re-identification with Correspondence Structure Learning
This paper addresses the problem of handling spatial misalignments due to
camera-view changes or human-pose variations in person re-identification. We
first introduce a boosting-based approach to learn a correspondence structure
which indicates the patch-wise matching probabilities between images from a
target camera pair. The learned correspondence structure can not only capture
the spatial correspondence pattern between cameras but also handle the
viewpoint or human-pose variation in individual images. We further introduce a
global-based matching process. It integrates a global matching constraint over
the learned correspondence structure to exclude cross-view misalignments during
the image patch matching process, hence achieving a more reliable matching
score between images. Experimental results on various datasets demonstrate the
effectiveness of our approach
Direct-Contact Heat Exchanger
Direct-contact heat transfer involves the exchange of heat between two immiscible fluids by bringing them into contact at different temperatures. There are two basic bubbling regimes in direct-contact heat exchanger: homogeneous and heterogeneous. Industrially, however, the homogeneous bubbling regime is less likely to prevail, owing to the high gas flow rates employed. The mixture homogeneity and the non-homogeneity of the mixture can be characterized by the Betti numbers and the mixing time can be estimated relying on image analysis and statistics in a direct-contact heat exchanger. To accurately investigate the space-time features of the mixing process in a direct contact heat exchanger, the uniformity coefficient method based on discrepancy theory for assessing the mixing time of bubbles behind the viewing windows is effective. Hence, the complexity of the bubble swarm patterns can be reduced and their mechanisms clarified, and the heat transfer performance in a direct-contact heat exchanger can be elucidated
Learning Correspondence Structures for Person Re-identification
This paper addresses the problem of handling spatial misalignments due to
camera-view changes or human-pose variations in person re-identification. We
first introduce a boosting-based approach to learn a correspondence structure
which indicates the patch-wise matching probabilities between images from a
target camera pair. The learned correspondence structure can not only capture
the spatial correspondence pattern between cameras but also handle the
viewpoint or human-pose variation in individual images. We further introduce a
global constraint-based matching process. It integrates a global matching
constraint over the learned correspondence structure to exclude cross-view
misalignments during the image patch matching process, hence achieving a more
reliable matching score between images. Finally, we also extend our approach by
introducing a multi-structure scheme, which learns a set of local
correspondence structures to capture the spatial correspondence sub-patterns
between a camera pair, so as to handle the spatial misalignments between
individual images in a more precise way. Experimental results on various
datasets demonstrate the effectiveness of our approach.Comment: IEEE Trans. Image Processing, vol. 26, no. 5, pp. 2438-2453, 2017.
The project page for this paper is available at
http://min.sjtu.edu.cn/lwydemo/personReID.htm arXiv admin note: text overlap
with arXiv:1504.0624
Small Candidate Set for Translational Pattern Search
In this paper, we study the following pattern search problem: Given a pair of point sets A and B in fixed dimensional space R^d, with |B| = n, |A| = m and n >= m, the pattern search problem is to find the translations T\u27s of A such that each of the identified translations induces a matching between T(A) and a subset B\u27 of B with cost no more than some given threshold, where the cost is defined as the minimum bipartite matching cost of T(A) and B\u27. We present a novel algorithm to produce a small set of candidate translations for the pattern search problem. For any B\u27 subseteq B with |B\u27| = |A|, there exists at least one translation T in the candidate set such that the minimum bipartite matching cost between T(A) and B\u27 is no larger than (1+epsilon) times the minimum bipartite matching cost between A and B\u27 under any translation (i.e., the optimal translational matching cost). We also show that there exists an alternative solution to this problem, which constructs a candidate set of size O(n log^2 n) in O(n log^2 n) time with high probability of success. As a by-product of our construction, we obtain a weak epsilon-net for hypercube ranges, which significantly improves the construction time and the size of the candidate set. Our technique can be applied to a number of applications, including the translational pattern matching problem
- …