5,642 research outputs found
Stability of matrix factorization for collaborative filtering
We study the stability vis a vis adversarial noise of matrix factorization
algorithm for matrix completion. In particular, our results include: (I) we
bound the gap between the solution matrix of the factorization method and the
ground truth in terms of root mean square error; (II) we treat the matrix
factorization as a subspace fitting problem and analyze the difference between
the solution subspace and the ground truth; (III) we analyze the prediction
error of individual users based on the subspace stability. We apply these
results to the problem of collaborative filtering under manipulator attack,
which leads to useful insights and guidelines for collaborative filtering
system design.Comment: ICML201
On the Computation Power of Name Parameterization in Higher-order Processes
Parameterization extends higher-order processes with the capability of
abstraction (akin to that in lambda-calculus), and is known to be able to
enhance the expressiveness. This paper focuses on the parameterization of
names, i.e. a construct that maps a name to a process, in the higher-order
setting. We provide two results concerning its computation capacity. First,
name parameterization brings up a complete model, in the sense that it can
express an elementary interactive model with built-in recursive functions.
Second, we compare name parameterization with the well-known pi-calculus, and
provide two encodings between them.Comment: In Proceedings ICE 2015, arXiv:1508.0459
- …