40,726 research outputs found

    Large Scale Constrained Linear Regression Revisited: Faster Algorithms via Preconditioning

    Full text link
    In this paper, we revisit the large-scale constrained linear regression problem and propose faster methods based on some recent developments in sketching and optimization. Our algorithms combine (accelerated) mini-batch SGD with a new method called two-step preconditioning to achieve an approximate solution with a time complexity lower than that of the state-of-the-art techniques for the low precision case. Our idea can also be extended to the high precision case, which gives an alternative implementation to the Iterative Hessian Sketch (IHS) method with significantly improved time complexity. Experiments on benchmark and synthetic datasets suggest that our methods indeed outperform existing ones considerably in both the low and high precision cases.Comment: Appear in AAAI-1

    Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input

    Full text link
    Non-autoregressive translation (NAT) models, which remove the dependence on previous target tokens from the inputs of the decoder, achieve significantly inference speedup but at the cost of inferior accuracy compared to autoregressive translation (AT) models. Previous work shows that the quality of the inputs of the decoder is important and largely impacts the model accuracy. In this paper, we propose two methods to enhance the decoder inputs so as to improve NAT models. The first one directly leverages a phrase table generated by conventional SMT approaches to translate source tokens to target tokens, which are then fed into the decoder as inputs. The second one transforms source-side word embeddings to target-side word embeddings through sentence-level alignment and word-level adversary learning, and then feeds the transformed word embeddings into the decoder as inputs. Experimental results show our method largely outperforms the NAT baseline~\citep{gu2017non} by 5.115.11 BLEU scores on WMT14 English-German task and 4.724.72 BLEU scores on WMT16 English-Romanian task.Comment: AAAI 201

    Using Battery Storage for Peak Shaving and Frequency Regulation: Joint Optimization for Superlinear Gains

    Full text link
    We consider using a battery storage system simultaneously for peak shaving and frequency regulation through a joint optimization framework which captures battery degradation, operational constraints and uncertainties in customer load and regulation signals. Under this framework, using real data we show the electricity bill of users can be reduced by up to 15\%. Furthermore, we demonstrate that the saving from joint optimization is often larger than the sum of the optimal savings when the battery is used for the two individual applications. A simple threshold real-time algorithm is proposed and achieves this super-linear gain. Compared to prior works that focused on using battery storage systems for single applications, our results suggest that batteries can achieve much larger economic benefits than previously thought if they jointly provide multiple services.Comment: To Appear in IEEE Transaction on Power System
    • …
    corecore