16 research outputs found
Neural Collaborative Ranking
Recommender systems are aimed at generating a personalized ranked list of
items that an end user might be interested in. With the unprecedented success
of deep learning in computer vision and speech recognition, recently it has
been a hot topic to bridge the gap between recommender systems and deep neural
network. And deep learning methods have been shown to achieve state-of-the-art
on many recommendation tasks. For example, a recent model, NeuMF, first
projects users and items into some shared low-dimensional latent feature space,
and then employs neural nets to model the interaction between the user and item
latent features to obtain state-of-the-art performance on the recommendation
tasks. NeuMF assumes that the non-interacted items are inherent negative and
uses negative sampling to relax this assumption. In this paper, we examine an
alternative approach which does not assume that the non-interacted items are
necessarily negative, just that they are less preferred than interacted items.
Specifically, we develop a new classification strategy based on the widely used
pairwise ranking assumption. We combine our classification strategy with the
recently proposed neural collaborative filtering framework, and propose a
general collaborative ranking framework called Neural Network based
Collaborative Ranking (NCR). We resort to a neural network architecture to
model a user's pairwise preference between items, with the belief that neural
network will effectively capture the latent structure of latent factors. The
experimental results on two real-world datasets show the superior performance
of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and
Knowledge Managemen
Ontology Based Semantic Modeling for Chinese Ancient Architectures
Figure 1: Ancient architectures in southeast China; the top two photos are taken from Hefang Street in Hangzhou, and the other two are taken from Xitang town, Zhejiang Province. Modeling complex architectures is quite challenging. We introduce a novel intelligent system, which can generate semi-style or semi-structure Chinese ancient architectures automatically. By using an ontology based approach to analyze the styles of different architectures, geometry primitives (e.g. point, line, triangle, etc.) are converted into semantic architecture components (e.g. window, gate, roof, etc.) as knowledge. The following modeling process can be performed at different semantic levels, and it is appealing to users having domain knowledge. This intelligent architecture modeling system has been successfully applied in the digital heritage project for ancient architectures in southeast China
Mining frequent itemsets in distorted databases with granula computing
Data perturbation is a popular method to achieve privacy-preserving data mining. However, distorted databases bring enormous overheads to mining algorithms as compared to original databases. In this paper, we present the GrC-FIM algorithm to address the efficiency problem in mining frequent itemsets from distorted databases. Two measures are introduced to overcome the weakness in existing work: firstly, the concept of independent granule is introduced, and granule inference is used to distinguish between non-independent itemsets and independent itemsets. We further prove that the support counts of non-independent itemsets can be directly derived from subitemsets, so that the error-prone reconstruction process can be avoided. This could improve the efficiency of the algorithm, and bring more accurate results; secondly, through the granular-bitmap representation, the support counts can be calculated in an efficient way. The empirical results on representative synthetic and real-world databases indicate that the proposed GrC-FIM algorithm outperforms the popular EMASK algorithm in both the efficiency and the support count reconstruction accuracy.<br /
Fast Hybrid Algorithm for Big Matrix Recovery
Large-scale Nuclear Norm penalized Least Square problem (NNLS) is frequently encountered in estimation of low rank structures. In this paper we accelerate the solution procedure by combining non-smooth convex optimization with smooth Riemannian method. Our methods comprise of two phases. In the first phase, we use Alternating Direction Method of Multipliers (ADMM) both to identify the fix rank manifold where an optimum resides and to provide an initializer for the subsequent refinement. In the second phase, two superlinearly convergent Riemannian methods: Riemannian NewTon (NT) and Riemannian Conjugate Gradient descent (CG) are adopted to improve the approximation over a fix rank manifold. We prove that our Hybrid method of ADMM and NT (HADMNT) converges to an optimum of NNLS at least quadratically. The experiments on large-scale collaborative filtering datasets demonstrate very competitive performance of these fast hybrid methods compared to the state-of-the-arts
Exact Subspace Clustering in Linear Time
Subspace clustering is an important unsupervised learning problem with wide applications in computer vision and data analysis. However, the state-of-the-art methods for this problem suffer from high time complexity---quadratic or cubic in (the number of data instances). In this paper we exploit a data selection algorithm to speedup computation and the robust principal component analysis to strengthen robustness. Accordingly, we devise a scalable and robust subspace clustering method which costs time only linear in . We prove theoretically that under certain mild assumptions our method solves the subspace clustering problem exactly even for grossly corrupted data. Our algorithm is based on very simple ideas, yet it is the only linear time algorithm with noiseless or noisy recovery guarantee. Finally, empirical results verify our theoretical analysis