68 research outputs found
Cell-Free Seminal mRNA and MicroRNA Exist in Different Forms
BACKGROUND: The great interest in cell-free mRNA, microRNA (miRNA) as molecular biomarkers for clinical applications, and as 'signaling' molecules for intercellular communication highlights the need to reveal their physical nature. Here this issue was explored in human cell-free seminal mRNA (cfs-mRNA) and miRNA (cfs-miRNA). METHODOLOGY/PRINCIPAL FINDINGS: Selected male reproductive organ-specific mRNAs, miRNAs, and piRNAs were quantified by quantitative real-time PCR in all experiments. While the stability of cfs-miRNA assessed by time-course analysis (up to 24 h at room temperature) was similar with cfs-mRNA, the reductive changes between cfs-miRNA and cfs-mRNA after filtration and Triton X-100 treatment on seminal plasma were very different, implying their different physical nature. Seminal microvesicles (SMVs) were then recovered and proportions of cfs-mRNA and cfs-miRNA within SMVs were quantified. The amounts of SMVs- sequestered cfs-mRNAs almost were the same as total cfs-mRNA, and were highly variable depending on the different sizes of SMVs. But most of cfs-miRNA was independent of SMVs and existed in the supernatant. The possible form of cfs-miRNA in the supernatant was further explored by filtration and protease K digestion. It passed through the 0.10-µm pore, but was degraded dramatically after intense protease K digestion. CONCLUSIONS/SIGNIFICANCE: The predominant cfs-mRNA is contained in SMVs, while most cfs-miRNA is bound with protein complexes. Our data explained the stability of extracellular RNAs in human semen, and shed light on their origins and potential functions in male reproduction, and strategy of developing them as biomarkers of male reproductive system
Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow
The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture
Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (FeMn)MoO
In the present work, magnetic properties of single crystal
(FeMn)MoO () have been studied by performing
extensive measurements. A detailed magnetic phase diagram is built up, in which
antiferromagnetic state dominates for and ferrimagnetic phase arises
for . Meanwhile, sizeable electric polarization of spin origin is
commonly observed in all samples, no matter what the magnetic state is. For the
samples hosting a ferrimagnetic state, square-like magnetic hysteresis loops
are revealed, while the remnant magnetization and coercive field can be tuned
drastically by simply varying the Mn-content or temperature. Possible
coexistence of the antiferromagnetic and ferrimagnetic phases is proposed to be
responsible for the remarkable modulation of magnetic properties in the
samples
Reference Ranges and Association of Age and Lifestyle Characteristics with Testosterone, Sex Hormone Binding Globulin, and Luteinizing Hormone among 1166 Western Chinese Men
Decreased total testosterone (TT) is the recommended metric to identify age-related hypogonadism. However, average TT and the extent to which it varies by age, can vary substantially among different populations. Population-specific reference ranges are needed to understand normal versus abnormal TT levels. Therefore, the goal for this study was to describe androgen concentrations and their correlates among Western Chinese men. We completed a population-based, cross-sectional study including 227 young adults (YA) (20–39 years) and 939 older adults (OA) (40–89 years). We measured TT, sex-hormone binding globulin (SHBG), luteinizing hormone (LH), testosterone secreting index (TSI), and calculated free testosterone (cFT). Reference ranges for this population were determined using average YA concentrations. Multivariable regression models were used to predict hormone concentrations adjusting for age, waist-to-height ratio (WHR), marital status, education, occupation, smoking, alcohol, blood glucose, and blood pressure. Among OA, 3.8% had low TT, 15.2% had low cFT, 26.3% had low TSI, 21.6% had high SHBG, and 6.1% had high LH. Average cFT was significantly lower in OA (0.30 nmol/L; standard deviation (SD): 0.09) versus YA (0.37; SD: 0.11) but TT was not different in OA (16.82 nmol/L; SD: 4.80) versus YA (16.88; SD: 5.29). In adjusted models increasing age was significantly associated with increased SHBG or LH, and decreased cFT or TSI; however, TT was not significantly associated with age (β = 0.02 nmol/L; 95% confidence interval (CI): -0.01, 0.04). Higher WHR was associated with significantly decreased TT, SHBG, TSI, and LH. The only variable significantly related to cFT was age (β = -0.0033; 95% CI:-0.0037, -0.0028); suggesting that cFT measurements would not be confounded by other lifestyle factors. In conclusion, cFT, but not TT, varies with age in this population, suggesting cFT may be a better potential marker for age-related androgen deficiency than TT among Western Chinese men
INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma
Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment
Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)
Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.National Key Scientific Program of China [2011CB944303]; National Nature Science Foundation of China [31271244, 31471344]; Promotion Program for Shenzhen Key Laboratory [CXB201104220045A]; Shenzhen Project of Science and Technology [JCYJ20130402113131202, JCYJ20140415162543017]SCI(E)[email protected]; [email protected]; [email protected]
4-Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis
Herein, vibrational spectroscopy has been applied for qualitative identification of biomolecular alterations that occur in cells and tissues following chemical treatment. Towards this end, we combined attenuated total reflection Fourier-transform infrared (ATR-FTIR) and Raman spectroscopy to assess testicular toxicology after 4-nonylphenol (NP) exposure, an estrogenic endocrine disruptor affecting testicular function in rats and other species. Rats aged 21, 35 or 50 days received NP at intra-peritoneal doses of 0, 25, 50 or 100 mg/kg for 20 consecutive days. Primary Sertoli cells (SCs) were treated with NP at various concentrations (0, 2.5, 5, 10 or 20 μM) for 12 h. Post-exposure, testicular cells, interstitial tissue and SCs were interrogated respectively using spectrochemical techniques coupled with multivariate analysis. Distinct biomolecular segregation between the NP-exposed samples vs. control were observed based on infrared (IR) spectral regions of 3200–2800 cm−1 and 1800-900 cm−1, and the Raman spectral region of 1800–900 cm−1. For in vivo experiments, the main wavenumbers responsible for segregation varied significantly among the three age classes. The main IR and Raman band differences between NP-exposed and control groups were observed for Amide (proteins), lipids and DNA/RNA. An interesting finding was that the peptide aggregation level, Amide Ӏ-to-Amide II ratio, and phosphate-to-carbohydrate ratio were considerably reduced in ex vivo NP-exposed testicular cells or SCs in vitro. This study demonstrates that ATR-FTIR and Raman spectroscopy techniques can be applied towards analysing NP-induced testicular biomolecular alterations
- …