22 research outputs found
Scaling from single-point sap velocity measurements to stand transpiration in a multispecies deciduous forest: Uncertainty sources, stand structure effect, and future scenarios
9 páginas.-- 5 figuras.-- 2 tablas.-- 58 referencias[EN] A major challenge in studies estimating stand water use in mixed-species forests is how to effectively scale data from individual trees to the stand. This is the case for forest ecosystems in the northeastern USA where differences in water use among species and across different size classes have not been extensively studied, despite their relevance for a wide range of ecosystem services. Our objectives were to assess the importance of different sources of variability on transpiration upscaling and explore the potential impacts of future shifts in species composition on the forest water budget. We measured sap velocity in five tree species (Fagus grandifolia Ehrh., Acer rubrum L., Acer saccharum Marsh., Betula alleghaniensis Britton, and Betula papyrifera Marsh.) in
a mature stand and a young stand in New Hampshire, USA. Our results showed that the greatest potential source of error was radial variability and that tree size was more important than species in determining sap velocity. Total sapwood area was demonstrated to exert a strong controlling influence on transpiration, varying depending on tree size and species. We conclude that the effect of potential species shifts on transpiration will depend on the sap velocity, determined not only by radial variation and tree size, but also by the sapwood area distribution in the stand.[FR] Les études dont le but est d'estimer l'utilisation de l'eau a` l'échelle du peuplement dans les forêts mélangées font face a` un défi majeur : comment passer efficacement de l'échelle des arbres individuels a` l'échelle du peuplement. C'est le cas pour les écosystèmes forestiers dans le nord-est des États-Unis où les différences dans l'utilisation de l'eau entre les espèces et parmi les différentes catégories de taille n'ont pas fait l'objet d'études approfondies malgré leur pertinence pour une vaste gamme de services de l'écosystème. Nos objectifs consistaient a` évaluer l'importance des différentes sources de variation sur l'extrapolation de la transpiration et a` explorer les impacts potentiels des changements futurs dans la composition en espèces sur le bilan hydrique de la forêt. Nous avons mesuré la vitesse de la sève chez cinq espèces d'arbre (Fagus grandifolia Ehrh., Acer rubrum L., Acer saccharum Marsh., Betula alleghaniensis Britton et Betula papyrifera Marsh.) dans un peuplement mature et dans un jeune peuplement au New Hampshire (É.-U.). Nos résultats ont montré que la plus grande source potentielle d'erreur était la variation radiale et que la vitesse de la sève était davantage déterminée par la taille des arbres que par l'espèce. La surface totale de bois d'aubier avait un effet très déterminant sur la transpiration qui variait selon la taille et l'espèce d'arbre. Nous concluons que l'effet des changements potentiels dans la composition en espèces sur la transpiration dépendra de la vitesse de la sève qui est principalement déterminée par la variation radiale et la taille des arbres mais aussi de la distribution de la surface de bois d'aubier dans le peuplement.This work was funded by the University of New Hampshire and the New Hampshire Agricultural Experiment Station. The Bartlett Experimental Forest is operated by the USDA Forest Service Northern Research Station. S. Mcgraw, P. Pellissier, C. Breton, S. Alvarado-Barrientos, R. Snyder, and Z. Aldag assisted in the field and in the lab. The 2011 stand inventory was led by S. Goswami. Tree heights were measured and compiled by C. Blodgett, T. Fahey, and L. Liu. A. Richardson shared meteorology and solar radiation data from the Bartlett Amerflux tower. The stands used in this experiment are maintained and monitored by the MELNHE project under the direction of R. Yanai and M. Fisk, with funding from NSF grants DEB 0235650 and DEB 0949324Peer reviewe
Gene expression analysis of porcine whole blood cells infected with foot-and-mouth disease virus using high-throughput sequencing technology
<div><p>Foot-and-mouth disease virus (FMDV) is a single-stranded positive RNA virus that belongs to the family <i>Picornaviridae</i>. FMDV infects cloven-hoofed animals, such as pigs, sheep, goats, cattle and diverse wildlife species, and remains a major threat to the livestock industry worldwide. In this study, a transcriptome analysis of whole blood from pigs infected with FMDV was performed using the paired-end Illumina sequencing technique to understand the interactions between the pathogen and its host cells. During infection with FMDV, a total of 120 differentially expressed genes (DEGs) were identified, including 110 up-regulated genes and 10 down-regulated genes. To further investigate the DEGs involved in interactions between the virus and its host, gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted. GO annotation indicated that a number of DEGs were enriched in categories involved in host-virus interactions, such as response to stimulus, immune system process and regulation of biological process. KEGG enrichment analysis indicated that the DEGs were primarily involved in the ribosome signaling pathway and immune-related signaling pathways. Ten DEGs, including the immune-related genes <i>BTK1</i>, <i>C1QB</i>, <i>TIMD4</i> and <i>CXCL10</i>, were selected and validated using quantitative PCR, which showed that the expression patterns of these genes are consistent with the results of the <i>in silico</i> expression analysis. In conclusion, this study presents the first transcriptome analysis of pig whole blood cells infected with FMDV, and the results obtained in this study improve our understanding of the interactions between FMDV and host cells as well as the diagnosis and control of FMD.</p></div
Protection-Free Ag Nanowires as a Transparent Conductive Electrode for Improved Cu(In<sub>1–<i>x</i></sub>, Ga<sub><i>x</i></sub>)Se<sub>2</sub> (CIGS)-Based Photovoltaic Performances
A rather
low efficiency for Cu(In<sub>1–<i>x</i></sub>, Ga<sub><i>x</i></sub>)Se<sub>2</sub> (CIGS)-based solar cells
(mostly less than 1%) is generally reported, where silver nanowires
(Ag NWs) are employed as a top transparent conductive electrode (TCE).
The weak adhesion and small contact area between the Ag NWs and the
n-type buffer layer remain an acknowledged issue to be addressed.
Here, a modified polyol reduction process was elaborately proposed,
on the basis of the regulation of the PVP molecule’s steric
effect and cationic chemical characteristics. Ag NWs with controllable
lengths and diameters were successfully synthesized, to meet the optimization
of the photovoltaic performance. The mixed PVP consisting of short
and long chains works very effectively, in increasing the length and
shortening the diameter. We attribute this to the large steric hindrance-induced
protective shielding on {100} planes by insertion of the short chains
into the long ones. Cationic chemical characteristics, on the effect
of Ag morphological evolution, were also referred and carefully conducted.
Importantly, a champion efficiency of 4.97% on pristine Ag NWs without
protection and post-treatment as a TCE was achieved, and this was
attributed to the enhanced adhesion and increased contact area between
Ag NWs and the top of buffer layer
KEGG annotation of differentially expressed genes.
<p>KEGG annotation showed that many unigenes are assigned to the ribosome signaling pathway and immune-related pathways.</p
Comparison of gene expression levels between the I and NI groups.
<p>Yellow triangles represent up-regulated genes, blue rhombuses indicate down-regulated genes, and brown dots represent genes that did not change significantly. The parameters “Probability> = 0.8” and “abs(log2(Y/X)> = 1)” were used as thresholds to determine the significance of gene expression differences.</p
Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement
Organometal
halide perovskites have recently emerged as outstanding semiconductors
for solid-state optoelectronic devices. Their sensitivity to moisture
is one of the biggest barriers to commercialization. In order to identify
the effect of moisture in the degradation process, here we combined
the in situ electrical resistance measurement with time-resolved X-ray
diffraction analysis to investigate the interaction of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3−<i>x</i></sub>Cl<sub><i>x</i></sub> perovskite films with moisture. Upon short-time
exposure, the resistance of the perovskite films decreased and it
could be fully recovered, which were ascribed to a mere chemisorption
of water molecules, followed by the reversible hydration into CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3–<i>x</i></sub>Cl<sub><i>x</i></sub>·H<sub>2</sub>O. Upon long-time exposure,
however, the resistance became irreversible due to the decomposition
into PbI<sub>2</sub>. The results demonstrated the formation of monohydrated
intermediate phase when the perovskites interacted with moisture.
The role of moisture in accelerating the thermal degradation at 85
°C was also demonstrated. Furthermore, our study suggested that
the perovskite films with fewer defects may be more inherently resistant
to moisture
Data_Sheet_6_Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets.ZIP
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.</p
Data_Sheet_9_Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets.ZIP
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.</p
Data_Sheet_1_Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets.ZIP
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.</p