6 research outputs found

    Supplemental material for The subjective well-being of academically gifted students in the Chinese cultural context

    No full text
    <p>Supplemental material for The subjective well-being of academically gifted students in the Chinese cultural context by Xinjie Chen, Xitao Fan, Hoi Yan Cheung and Joseph Wu in School Psychology International</p

    Engineering a HemoMap Nanovaccine for Inducing Immune Responses against Melanoma

    No full text
    Neoantigen vaccines have opened a new paradigm for cancer immunotherapy. Here, we constructed a neoantigen nanovaccine-HemoMap, with the ability to target lymph nodes and activate immune cells. We propose a HemoMap nanovaccine consisting of the mouse melanoma highly expressed antigenic peptide Tyrp1 and a magnesium nanoadjuvant-HemoM. By immunofluorescence labeling of the nanovaccine, the lymph node targeting of the vaccine was observed and verified by a mouse near-infrared imaging system. About two-fold higher effective retention of HemoMap induces the internalization of Tyrp1 in DCs than that of free Tyrp1 in draining lymph nodes (DLNs) for 48 h. A mouse melanoma subcutaneous model was established to evaluate neoantigen-specific antitumor immune responses. In comparison to the control group, the tumor growth rate was dramatically slowed down by HemoMap treatment, and the median survival time was extended by 7 days. We discovered that effective co-delivery of Tyrp1 antigen and magnesium (Mg2+) to lymph nodes (LNs) boosted cellular internalization and activated immune cells, such as CD11c+ DCs and CD8+ T lymphocytes. Spleen lymphocytes from the HemoMap group displayed much more antitumor activity than those from the other groups. Our findings highlight that HemoMap is promising to trigger T cell responses and to provide novel nanoadjuvants strategies for cancer immunotherapy

    Image_1_Using MemTrax memory test to screen for post-stroke cognitive impairment after ischemic stroke: a cross-sectional study.TIF

    No full text
    BackgroundWhereas the Montreal Cognitive Assessment (MoCA) and Addenbrooke’s cognitive examination-revised (ACE-R) are commonly used tests for the detection of post-stroke cognitive impairment (PSCI), these instruments take 10–30 min to administer and do not assess processing speed, which is a critical impairment in PSCI. MemTrax (MTx) is a continuous recognition test, which evaluates complex information processing, accuracy, speed, and attention, in 2 min.AimTo evaluate whether MTx is an effective and practical tool for PSCI assessment.MethodsThis study enrolled acute ischemic stroke (AIS) patients who have assessed the cognitive status including MTx, clinical dementia rating (CDR), MoCA, Neuropsychiatric Inventory (NPI), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), the National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), and Barthel Index of activity of daily living (BI) combined with the physical examinations of the neurologic system at the 90-day (D90) after the AIS. The primary endpoint of this study was establishing MTx cut-offs for distinguishing PSCI from AIS.ResultsOf the 104 participants, 60 were classified to the PSCI group. The optimized cut-off value of MTx-%C (percent correct) was 78%, with a sensitivity and specificity for detecting PSCI from Non-PSCI of 90.0 and 84.1%, respectively, and an AUC of 0.919. Regarding the MTx-Cp (Composite score = MTx-%C/MTx-RT), using 46.3 as a cut-off value, the sensitivity and specificity for detecting PSCI from Non-PSCI were 80.0 and 93.2%, with an AUC of 0.925. Multivariate linear regression showed that PSCI reduced the MTx-%C (Coef. −14.18, 95% CI −18.41∼−9.95, p ConclusionMemTrax (MTx) is valid and effective for screening for PSCI among target patients and is a potentially valuable and practical tool in the clinical follow-up, monitoring, and case management of PSCI.</p

    Image_1_Using MemTrax memory test to screen for post-stroke cognitive impairment after ischemic stroke: a cross-sectional study.pdf

    No full text
    BackgroundWhereas the Montreal Cognitive Assessment (MoCA) and Addenbrooke’s cognitive examination-revised (ACE-R) are commonly used tests for the detection of post-stroke cognitive impairment (PSCI), these instruments take 10–30 min to administer and do not assess processing speed, which is a critical impairment in PSCI. MemTrax (MTx) is a continuous recognition test, which evaluates complex information processing, accuracy, speed, and attention, in 2 min.AimTo evaluate whether MTx is an effective and practical tool for PSCI assessment.MethodsThis study enrolled acute ischemic stroke (AIS) patients who have assessed the cognitive status including MTx, clinical dementia rating (CDR), MoCA, Neuropsychiatric Inventory (NPI), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), the National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), and Barthel Index of activity of daily living (BI) combined with the physical examinations of the neurologic system at the 90-day (D90) after the AIS. The primary endpoint of this study was establishing MTx cut-offs for distinguishing PSCI from AIS.ResultsOf the 104 participants, 60 were classified to the PSCI group. The optimized cut-off value of MTx-%C (percent correct) was 78%, with a sensitivity and specificity for detecting PSCI from Non-PSCI of 90.0 and 84.1%, respectively, and an AUC of 0.919. Regarding the MTx-Cp (Composite score = MTx-%C/MTx-RT), using 46.3 as a cut-off value, the sensitivity and specificity for detecting PSCI from Non-PSCI were 80.0 and 93.2%, with an AUC of 0.925. Multivariate linear regression showed that PSCI reduced the MTx-%C (Coef. −14.18, 95% CI −18.41∼−9.95, p ConclusionMemTrax (MTx) is valid and effective for screening for PSCI among target patients and is a potentially valuable and practical tool in the clinical follow-up, monitoring, and case management of PSCI.</p

    Data_Sheet_1_Using MemTrax memory test to screen for post-stroke cognitive impairment after ischemic stroke: a cross-sectional study.docx

    No full text
    BackgroundWhereas the Montreal Cognitive Assessment (MoCA) and Addenbrooke’s cognitive examination-revised (ACE-R) are commonly used tests for the detection of post-stroke cognitive impairment (PSCI), these instruments take 10–30 min to administer and do not assess processing speed, which is a critical impairment in PSCI. MemTrax (MTx) is a continuous recognition test, which evaluates complex information processing, accuracy, speed, and attention, in 2 min.AimTo evaluate whether MTx is an effective and practical tool for PSCI assessment.MethodsThis study enrolled acute ischemic stroke (AIS) patients who have assessed the cognitive status including MTx, clinical dementia rating (CDR), MoCA, Neuropsychiatric Inventory (NPI), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), the National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), and Barthel Index of activity of daily living (BI) combined with the physical examinations of the neurologic system at the 90-day (D90) after the AIS. The primary endpoint of this study was establishing MTx cut-offs for distinguishing PSCI from AIS.ResultsOf the 104 participants, 60 were classified to the PSCI group. The optimized cut-off value of MTx-%C (percent correct) was 78%, with a sensitivity and specificity for detecting PSCI from Non-PSCI of 90.0 and 84.1%, respectively, and an AUC of 0.919. Regarding the MTx-Cp (Composite score = MTx-%C/MTx-RT), using 46.3 as a cut-off value, the sensitivity and specificity for detecting PSCI from Non-PSCI were 80.0 and 93.2%, with an AUC of 0.925. Multivariate linear regression showed that PSCI reduced the MTx-%C (Coef. −14.18, 95% CI −18.41∼−9.95, p ConclusionMemTrax (MTx) is valid and effective for screening for PSCI among target patients and is a potentially valuable and practical tool in the clinical follow-up, monitoring, and case management of PSCI.</p

    Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes

    No full text
    Lithium metal anodes can largely enhance the energy density of rechargeable batteries because of the high theoretical capacity and the high negative potential. However, the problem of lithium dendrite formation and low Coulombic efficiency (CE) during electrochemical cycling must be solved before lithium anodes can be widely deployed. Herein, a new atomic layer deposition (ALD) chemistry to realize the low-temperature synthesis of homogeneous and stoichiometric lithium fluoride (LiF) is reported, which then for the first time, as far as we know, is deposited directly onto lithium metal. The LiF preparation is performed at 150 °C yielding 0.8 Å/cycle. The LiF films are found to be crystalline, highly conformal, and stoichiometric with purity levels >99%. Nanoindentation measurements demonstrate the LiF achieving a shear modulus of 58 GPa, 7 times higher than the sufficient value to resist lithium dendrites. When used as the protective coating on lithium, it enables a stable Coulombic efficiency as high as 99.5% for over 170 cycles, about 4 times longer than that of bare lithium anodes. The remarkable battery performance is attributed to the nanosized LiF that serves two critical functions simultaneously: (1) the high dielectric value creates a uniform current distribution for excellent lithium stripping/plating and ultrahigh mechanical strength to suppress lithium dendrites; (2) the great stability and electrolyte isolation by the pure LiF on lithium prevents parasitic reactions for a much improved CE. This new ALD chemistry for conformal LiF not only offers a promising avenue to implement lithium metal anodes for high-capacity batteries but also paves the way for future studies to investigate failure and evolution mechanisms of solid electrolyte interphase (SEI) using our LiF on anodes such as graphite, silicon, and lithium
    corecore