13 research outputs found
Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells
We report herein perovskite solar
cells using solution-processed silver nanowires (AgNWs) as transparent
top electrode with markedly enhanced device performance, as well as
stability by evaporating an ultrathin transparent Au (UTA) layer beneath
the spin-coated AgNWs forming a composite transparent metallic electrode.
The interlayer serves as a physical separation sandwiched in between
the perovskite/hole transporting material (HTM) active layer and the
halide-reactive AgNWs top-electrode to prevent undesired electrode
degradation and simultaneously functions to significantly promote
ohmic contact. The as-fabricated semitransparent PSCs feature a <i>V</i><sub>oc</sub> of 0.96 V, a <i>J</i><sub>sc</sub> of 20.47 mA cm<sup>–2</sup>, with an overall PCE of over
11% when measured with front illumination and a <i>V</i><sub>oc</sub> of 0.92 V, a <i>J</i>sc of 14.29 mA cm<sup>–2</sup>, and an overall PCE of 7.53% with back illumination,
corresponding to approximately 70% of the value under normal illumination
conditions. The devices also demonstrate exceptional fabrication repeatability
and air stability
Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells
Although low-temperature,
solution-processed zinc oxide (ZnO) has
been widely adopted as the electron collection layer (ECL) in perovskite
solar cells (PSCs) because of its simple synthesis and excellent electrical
properties such as high charge mobility, the thermal stability of
the perovskite films deposited atop ZnO layer remains as a major issue.
Herein, we addressed this problem by employing aluminum-doped zinc
oxide (AZO) as the ECL and obtained extraordinarily thermally stable
perovskite layers. The improvement of the thermal stability was ascribed
to diminish of the Lewis acid–base chemical reaction between
perovskite and ECL. Notably, the outstanding transmittance and conductivity
also render AZO layer as an ideal candidate for transparent conductive
electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au.
Optimization of the perovskite layer leads to an excellent and repeatable
photovoltaic performance, with the champion cell exhibiting an open-circuit
voltage (<i>V</i><sub>oc</sub>) of 0.94 V, a short-circuit
current (<i>J</i><sub>sc</sub>) of 20.2 mA cm<sup>–2</sup>, a fill factor (FF) of 0.67, and an overall power conversion efficiency
(PCE) of 12.6% under standard 1 sun illumination. It was also revealed
by steady-state and time-resolved photoluminescence that the AZO/perovskite
interface resulted in less quenching than that between perovskite
and hole transport material
Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cells with Suppressed Hysteresis
Electron-extraction
layer (EEL) plays a critical role in determining the charge extraction
and the
power conversion efficiencies of the organometal-halide perovskite
solar cells (PSCs). In this work, Ti–Fe–O ternary oxides
were first developed to work as an efficient EEL in planar PSC. Compared
with the widely used TiO<i><sub>x</sub></i> and the pure
FeO<i><sub>x</sub></i>, the ternary composites show superior
properties in multiple aspects including the excellent stability of
the precursor solution, good coverage on the substrates, outstanding
electrical properties, and suitable energy levels. By varying the
Fe content from 0 to 100% in the Ti–Fe–O composites,
the conductivity of the resultant compact layer was markedly improved,
confirmed by consistent results from the conductive atomic force microscopy
and the linear sweep voltammetry measurements. Meanwhile, the compositional
engineering tunes the energy level alignment of the Ti–Fe–O
EEL/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> interface to a region
that is favorable for obtaining excellent charge-extraction property.
The combinational advantages of the Ti–Fe–O composites
significantly improved the photovoltaic performance of the as-prepared
solar cells. An increase of over 20% in the short-circuit current
(<i>J</i><sub>SC</sub>) density has been achieved due to
a modified EEL conductivity and energy alignment with the perovskite
layer. The reduction in the surface recombination and enhancement
of the charge collection efficiency also result in about 15% increase
in the fill factor. Notably, the device also showed remarkably alleviated
hysteresis behavior, revealing a prominently inhibited surface recombination
Table_1_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Table_4_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Table_7_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Table_2_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Table_6_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Data_Sheet_1_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.PDF
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p
Table_5_Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.XLSX
IntroductionPotatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.MethodsPVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.ResultTranscriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant–pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.ConclusionThese results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.</p