5 research outputs found

    Air Flow Assisted One Step Synthesis of Porous Carbon with Selected Area Enriched Ag/ZnO Nanocomposites

    No full text
    With the aid of air flow, porous carbon with selective region elemental enrichment was synthesized, for the first time, through a facile one step strategy. As the model system, a series of porous carbon substrates with exquisite gradient Ag/ZnO nanomodifications were accordingly obtained. The relative air assisted formational mechanism and potential capabilities of these gradient color products were investigated systematically. As a result, the obtained samples exhibited impressive potential in both the inhibition of microorganism and degradation of organic pollutants. And the corresponding high-efficient water purification process could be accomplished even without irradiation

    Hydrazone-Bearing PMMA-Functionalized Magnetic Nanocubes as pH-Responsive Drug Carriers for Remotely Targeted Cancer Therapy in Vitro and in Vivo

    No full text
    To develop vehicles for efficient chemotherapeutic cancer therapy, we report a remotely triggered drug delivery system based on magnetic nanocubes. The synthesized magnetic nanocubes with average edge length of around 30 nm acted as cores, whereas poly­(methyl methacrylate) (PMMA) was employed as an intermediate coating layer. Hydrazide was then tailored onto PMMA both for doxorubicin (DOX) loading and pH responsive drug delivery via the breakage of hydrazine bonds. The successful fabrication of the pH responsive drug carrier was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and magnetic hysteresis loops, respectively. The carrier was stable at neutral environment and doxorubicin released at pH of 5.0. Cell viability assay and confocal laser scanning microscopy observations demonstrated that the loaded DOX could be efficiently released after cellular endocytosis and induced cancer cells apoptosis thereby. More importantly, the carrier could be guided to the tumor tissue site with an external magnetic field and led to efficient tumor inhibition with low side effects, which were reflected by magnetic resonance imaging (MRI), change of tumor size, TUNEL staining, and H&E staining assays, respectively. All results suggest that hydrazide-tailoring PMMA-coated magnetic nanocube would be a promising pH-responsive drug carrier for remotely targeted cancer therapy in vitro and in vivo

    Physical Properties of an Ultrathin Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> Composite Film by Atomic Layer Deposition and the Application in Thin-Film Transistors

    No full text
    A high-quality ultrathin dielectric film is important in the field of microelectronics. We designed a composite structure composed of Al2O3/HfO2 with different Al2O3/HfO2 cycles prepared by atomic layer deposition (ALD) to obtain high-quality ultrathin (1–12 nm) dielectric films. Al2O3 protected HfO2 from interacting with the Si substrate and inhibited the crystallization of the HfO2 film. High permittivity material of HfO2 was adopted to guarantee the good insulating property of the composite film. We investigated the physical properties as well as the growth mode of the composite film and found that the film exhibited a layer growth mode. The water contact angle and grazing-incidence small-angle X-ray scattering analyses revealed that the film was formed physically at 3 nm, while the thickness of the electrically stable film was 10 nm from grazing-incidence wide-angle X-ray scattering and dielectric constant analyses. The composite film was applied as a dielectric layer in thin-film transistors (TFTs). The threshold voltage was decreased to 0.27 V compared to the organic field-effect transistor with the single HfO2 dielectric, and the subthreshold swing was as small as 0.05 V/dec with a carrier mobility of 49.2 cm2/V s. The off-current was as low as 10–11 A, and the on/off ratio was as high as 5.5 × 106. This ALD-prepared composite strategy provides a simple and practical way to obtain the high-quality dielectric film, which shows the potential application in the field of microelectronics

    The “Pure Marriage” between 3D Printing and Well-Ordered Nanoarrays by Using PEALD Assisted Hydrothermal Surface Engineering

    No full text
    For the first time, homogeneous and well-ordered functional nanoarrays were grown densely on the complex structured three-dimensional (3D) printing frameworks through a general plasma enhanced atomic layer deposition (PEALD) assisted hydrothermal surface engineering process. The entire process was free from toxic additives or harmful residues and, therefore, can meet the critical requirements of high-purity products. As a practical example, 3D customized earplugs were precisely manufactured according to the model of ear canals at the 0.1 mm level. Meanwhile, well-ordered ZnO nanoarrays, formed on the surfaces of these 3D printed earplugs, could effectively prevent the growth of five main pathogens derived from the patients with otitis media and exhibited excellent wear resistance as well. On the basis of both animal experiments and volunteers’ investigations, the 3D customized earplugs showed sound insulation capabilities superior to those of traditional earplugs. Further animal experiments demonstrated the potential of as-modified implant scaffolds in practical clinical applications. This work, exemplified with earplugs and implant scaffolds, oriented the development direction of 3D printing in biomedical devices, which precisely integrated customized architecture and tailored surface performance

    The “Pure Marriage” between 3D Printing and Well-Ordered Nanoarrays by Using PEALD Assisted Hydrothermal Surface Engineering

    No full text
    For the first time, homogeneous and well-ordered functional nanoarrays were grown densely on the complex structured three-dimensional (3D) printing frameworks through a general plasma enhanced atomic layer deposition (PEALD) assisted hydrothermal surface engineering process. The entire process was free from toxic additives or harmful residues and, therefore, can meet the critical requirements of high-purity products. As a practical example, 3D customized earplugs were precisely manufactured according to the model of ear canals at the 0.1 mm level. Meanwhile, well-ordered ZnO nanoarrays, formed on the surfaces of these 3D printed earplugs, could effectively prevent the growth of five main pathogens derived from the patients with otitis media and exhibited excellent wear resistance as well. On the basis of both animal experiments and volunteers’ investigations, the 3D customized earplugs showed sound insulation capabilities superior to those of traditional earplugs. Further animal experiments demonstrated the potential of as-modified implant scaffolds in practical clinical applications. This work, exemplified with earplugs and implant scaffolds, oriented the development direction of 3D printing in biomedical devices, which precisely integrated customized architecture and tailored surface performance
    corecore