6 research outputs found

    Table_1_Seasonal succession of microbial community co-occurrence patterns and community assembly mechanism in coal mining subsidence lakes.docx

    No full text
    Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.</p

    Image_1_Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection.TIF

    No full text
    Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.</p

    Image_2_Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection.TIF

    No full text
    Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.</p

    Identification of a Specific Phage as Growth Factor Alternative Promoting the Recruitment and Differentiation of MSCs in Bone Tissue Regeneration

    No full text
    Inefficient use and loss of exogenously implanted mesenchymal stem cells (MSCs) are major concerns in MSCs-based bone tissue engineering. It is a promising approach to overcome the above issues by recruiting and regulation of endogenous MSCs. However, there are few substances that can recruit MSCs effectively and specifically to the site of bone injury. In this study, we identified a phage clone (termed P11) with specific affinity for MSCs through phage display biopanning, and further investigated the effects of P11 on the cytological behavior of MSCs and macrophages. The results showed that P11 could bind MSCs specifically and promote the proliferation and migration of MSCs. Meanwhile, P11 could polarize macrophages to the M1 phenotype and significantly changed their morphology, which further enhanced the chemotaxis of MSCs. Additionally, RNA-seq results revealed that P11 could promote the secretion of osteogenesis-related markers in MSCs through the TPL2-MEK-ERK signaling pathway. Altogether, P11 has great potential to be used as growth factor alternatives in bone tissue engineering, with the advantages of cheaper and stable activity. Our study also advances the understanding of the effects of phages on macrophages and MSCs, and provides a new idea for the development in the field of phage-based tissue engineering

    Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation

    No full text
    Both the low energy density of near-infrared (NIR) photothermal conversion during treatment and the recurrence and metastasis after local treatment have been the main obstacles and conundrums in polydopamine-mediated tumor photothermal therapy (PTT). Herein, On the basis of the enhancement of NIR absorption by ligand to metal charge transfer (LMCT) in transition-metal complexes and the activation of antitumor immunity by an appropriate concentration of FeĀ­(III) ions, FeĀ­(III)-chelated PDA nanoparticles (Fe-PDA NPs) with high loading and responsive release of iron ions were synthesized through a prechelation–polymerization method. First, FeĀ­(III) chelated with the catechol groups in DA to form a mono-dopa-FeĀ­(III) chelate, and then the polymerization of dopamine was initiated under alkaline conditions. The results revealed that the mono-dopa-FeĀ­(III) chelate was still the main form of the Fe ion existing in Fe-PDA and was able to greatly enhance the light absorption behaviors of PDA in NIR, resulting a superior photothermal conversion ability (Ī· = 55.5%). Moreover, the existence of FeĀ­(III) also gave Fe-PDA a T1-weighted MRI contrast-enhancement performance (r1 = 7.668 mM–1 s–1) and it would enable the accurate ablation of primary tumors in vivo with Fe-PDA under NIR irradiation by means of the guidance of MRI and thermal imaging. Furthermore, Fe-PDA exhibited better H2O2-responsive biodegradability in comparison to PDA and easily released Fe ions in tumors, which could effectively promote the tumor-associated macrophage (TAM) repolarization to the M1 mode. TAM repolarization combined with the immunogenic cell death (ICD) induced by PTT could effectively enhance the efficacy of immunotherapy, preventing tumor recurrence and metastasis. The design of Fe-PDA nanoparticles should provide more inspiration for structural and functional improvements of melanin-based materials in tumor suppression
    corecore