1,499 research outputs found

    Symbolic analysis for some planar piecewise linear maps

    Get PDF
    In this paper a class of linear maps on the 2-torus and some planar piecewise isometries are discussed. For these discontinuous maps, by introducing codings underlying the map operations, symbolic descriptions of the dynamics and admissibility conditions for itineraries are given, and explicit expressions in terms of the codings for periodic points are presented.Comment: 4 Figure

    On a Linear Chaotic Quantum Harmonic Oscillator

    Get PDF
    We show that a linear quantum harmonic oscillator is chaotic in the sense of Li-Yorke. We also prove that the weighted backward shift map, used as an infinite dimensional linear chaos model, in a separable Hilbert space is chaotic in the sense of Li-Yorke, in addition to being chaotic in the sense of Devaney.Comment: LaTex file. Applied Mathematics Letters, to appea

    Chaotic Properties of Subshifts Generated by a Non-Periodic Recurrent Orbit

    Full text link
    The chaotic properties of some subshift maps are investigated. These subshifts are the orbit closures of certain non-periodic recurrent points of a shift map. We first provide a review of basic concepts for dynamics of continuous maps in metric spaces. These concepts include nonwandering point, recurrent point, eventually periodic point, scrambled set, sensitive dependence on initial conditions, Robinson chaos, and topological entropy. Next we review the notion of shift maps and subshifts. Then we show that the one-sided subshifts generated by a non-periodic recurrent point are chaotic in the sense of Robinson. Moreover, we show that such a subshift has an infinite scrambled set if it has a periodic point. Finally, we give some examples and discuss the topological entropy of these subshifts, and present two open problems on the dynamics of subshifts

    Symbolic representation of iterated maps

    Get PDF
    This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over usually an uncountable alphabet. It is shown that at most the second order representation is enough for a continuous map. In particular, it is shown that the dynamics of one-dimensional continuous maps to a great extent can be transformed to the study of subshift structure of a general symbolic dynamics system. By introducing distillations, partial representations of some general continuous maps are obtained. Finally, partitions and representations of a class of discontinuous maps, piecewise continuous maps are discussed, and as examples, a representation of the Gauss map via a full shift over a countable alphabet and representations of interval exchange transformations as subshifts of infinite type are given

    Fitness-driven deactivation in network evolution

    Full text link
    Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, C(k)k1C(k) \sim k^{-1} and Cn1C \sim n^{-1}, where kk and nn refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.Comment: IoP Styl

    Design of filtering microstrip antenna array with reduced sidelobe level

    Get PDF
    corecore