44,207 research outputs found

    Firefly Algorithm, Stochastic Test Functions and Design Optimisation

    Full text link
    Modern optimisation algorithms are often metaheuristic, and they are very promising in solving NP-hard optimization problems. In this paper, we show how to use the recently developed Firefly Algorithm to solve nonlinear design problems. For the standard pressure vessel design optimisation, the optimal solution found by FA is far better than the best solution obtained previously in literature. In addition, we also propose a few new test functions with either singularity or stochastic components but with known global optimality, and thus they can be used to validate new optimisation algorithms. Possible topics for further research are also discussed.Comment: 12 pages, 11 figure

    Nonlinear Viscoelastic Compaction in Sedimentary Basins

    Get PDF
    In the mathematical modelling of sediment compaction and porous media flow, the rheological behaviour of sediments is typically modelled in terms of a nonlinear relationship between effective pressure pep_e and porosity Ο•\phi, that is pe=pe(Ο•)p_e=p_e(\phi). The compaction law is essentially a poroelastic one. However, viscous compaction due to pressure solution becomes important at larger depths and causes this relationship to become more akin to a viscous rheology. A generalised viscoelastic compaction model of Maxwell type is formulated, and different styles of nonlinear behaviour are asymptotically analysed and compared in this paper

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146

    Bat Algorithm for Multi-objective Optimisation

    Full text link
    Engineering optimization is typically multiobjective and multidisciplinary with complex constraints, and the solution of such complex problems requires efficient optimization algorithms. Recently, Xin-She Yang proposed a bat-inspired algorithm for solving nonlinear, global optimisation problems. In this paper, we extend this algorithm to solve multiobjective optimisation problems. The proposed multiobjective bat algorithm (MOBA) is first validated against a subset of test functions, and then applied to solve multiobjective design problems such as welded beam design. Simulation results suggest that the proposed algorithm works efficiently.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1004.417
    • …
    corecore