8,380 research outputs found

    K0Kˉ0K^0-\bar{K}^0 mixing in the minimal flavor-violating two-Higgs-doublet models

    Get PDF
    The two-Higgs-doublet model (2HDM), as one of the simplest extensions of the Standard Model (SM), is obtained by adding another scalar doublet to the SM, and is featured by a pair of charged scalars, which could affect many low-energy processes. In the "Higgs basis" for a generic 2HDM, only one scalar doublet gets a nonzero vacuum expectation value and, under the criterion of minimal flavor violation, the other one is fixed to be either color-singlet or color-octet, which are named as the type-III and the type-C 2HDM, respectively. In this paper, we study the charged-scalar effects of these two models on the K0Kˉ0K^0-\bar{K}^0 mixing, an ideal process to probe New Physics (NP) beyond the SM. Firstly, we perform a complete one-loop computation of the box diagrams relevant to the K0Kˉ0K^0-\bar{K}^0 mixing, keeping the mass and momentum of the external strange quark up to the second order. Together with the up-to-date theoretical inputs, we then give a detailed phenomenological analysis, in the cases of both real and complex Yukawa couplings of the charged scalars to quarks. The parameter spaces allowed by the current experimental data on the mass difference ΔmK\Delta m_K and the CP-violating parameter ϵK\epsilon_K are obtained and the differences between these two 2HDMs are investigated, which are helpful to distinguish them from each other from a phenomenological point of view.Comment: 30 pages,10 figures, 2 table

    Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials - A general bond polarizability model

    Full text link
    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences (e.g. ABAB, ABCABC), leading to different physical properties. Here, we show that regardless of the space group of the 2D material, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.Comment: 30 pages, 8 figure
    corecore