15,271 research outputs found
Recommended from our members
Document generality: its computation for ranking
The increased variety of information makes it critical to retrieve documents which are not only relevant but also broad enough to cover as many different aspects of a certain topic as possible. The increased variety of users also makes it critical to retrieve documents that are jargon free and easy-to-understand rather than the specific technical materials. In this paper, we propose a new concept namely document generality computation. Generality of document is of fundamental importance to information retrieval. Document generality is the state or quality of docu- ment being general. We compute document general- ity based on a domain-ontology method that analyzes scope and semantic cohesion of concepts appeared in the text. For test purposes, our proposed approach is then applied to improving the performance of doc- ument ranking in bio-medical information retrieval. The retrieved documents are re-ranked by a combined score of similarity and the closeness of documents’ generality to that of a query. The experiments have shown that our method can work on a large scale bio-medical text corpus OHSUMED (Hersh, Buckley, Leone & Hickam 1994), which is a subset of MEDLINE collection containing of 348,566 medical journal references and 101 test queries, with an encouraging performance
Comment on "Topological Nodal-Net Semimetal in a Graphene Network Structure"
Recently, a distinct topological semimetal, nodal-net semimetal, has been
identified by Wang et al. through ab initio calculations [Phys. Rev. Lett. 120,
026402 (2018)]. The authors claimed that a new body-centered tetragonal carbon
allotrope with I4/mmm symmetry, termed bct-C40, can host this novel state
exhibiting boxed-astrisk shaped nodal nets. In this Comment, we demonstrate
that bct-C40 is in fact a nodal surface semimetal, the concept of which has
been proposed as early as 2016 [Phys. Rev. B 93, 085427 (2016)]
On A Simpler and Faster Derivation of Single Use Reliability Mean and Variance for Model-Based Statistical Testing
Markov chain usage-based statistical testing has proved sound and effective in providing audit trails of evidence in certifying software-intensive systems. The system end-toend reliability is derived analytically in closed form, following an arc-based Bayesian model. System reliability is represented by an important statistic called single use reliability, and defined as the probability of a randomly selected use being successful. This paper continues our earlier work on a simpler and faster derivation of the single use reliability mean, and proposes a new derivation of the single use reliability variance by applying a well-known theorem and eliminating the need to compute the second moments of arc
failure probabilities. Our new results complete a new analysis that could be shown to be simpler, faster, and more direct while also rendering a more intuitive explanation. Our new
theory is illustrated with three simple Markov chain usage models with manual derivations and experimental results
Neural Collaborative Ranking
Recommender systems are aimed at generating a personalized ranked list of
items that an end user might be interested in. With the unprecedented success
of deep learning in computer vision and speech recognition, recently it has
been a hot topic to bridge the gap between recommender systems and deep neural
network. And deep learning methods have been shown to achieve state-of-the-art
on many recommendation tasks. For example, a recent model, NeuMF, first
projects users and items into some shared low-dimensional latent feature space,
and then employs neural nets to model the interaction between the user and item
latent features to obtain state-of-the-art performance on the recommendation
tasks. NeuMF assumes that the non-interacted items are inherent negative and
uses negative sampling to relax this assumption. In this paper, we examine an
alternative approach which does not assume that the non-interacted items are
necessarily negative, just that they are less preferred than interacted items.
Specifically, we develop a new classification strategy based on the widely used
pairwise ranking assumption. We combine our classification strategy with the
recently proposed neural collaborative filtering framework, and propose a
general collaborative ranking framework called Neural Network based
Collaborative Ranking (NCR). We resort to a neural network architecture to
model a user's pairwise preference between items, with the belief that neural
network will effectively capture the latent structure of latent factors. The
experimental results on two real-world datasets show the superior performance
of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and
Knowledge Managemen
- …