19 research outputs found

    Table_1_Myotonia Congenita: Clinical Characteristic and Mutation Spectrum of CLCN1 in Chinese Patients.DOCX

    No full text
    Background:CLCN1-related myotonia congenita (MC) is one of the most common forms of non-dystrophic myotonia, in which muscle relaxation is delayed after voluntary or evoked contraction. However, there is limited data of clinical and molecular spectrum of MC patients in China.Patients and Methods: Five patients with myotonia congenita due to mutations in CLCN1 gene were enrolled, which were identified through trio-whole-exome sequencing or panel-based next-generation sequencing test. The clinical presentation, laboratory data, electrophysiological tests, muscular pathology feature, and genetic results were collected and reviewed. We also searched all previously reported cases of MC patients with genetic diagnosis in Chinese populations, and their data were reviewed.Results: The median onset age of five patients was 3.0 years old, ranging from 1.0 to 5.0 years old, while the median age of admit was 5.0 years old, ranging from 3.5 to 8.8 years old. Five patients complained of muscle stiffness when rising from chairs or starting to climb stairs (5/5, 100.0%), four patients complained of delayed relaxation of their hands after forceful grip (4/5, 80.0%), all of which improved with exercise (warm-up phenomenon) (5/5, 100%). Electromyogram was conducted in five patients, which all revealed myotonic change (100%). Genetic tests revealed nine potential disease-causing variants in CLCN1 gene, including two novel variants: c.962T>A (p.V321E) and c.1250A>T (p.E417V). Literature review showed that 43 MC Chinese patients with genetic diagnosis have been reported till now (including our five patients). Forty-seven variants in CLCN1 gene were found, which consisted of 33 missense variants, 6 nonsense variants, 5 frame-shift variants, and 3 splicing variants. Variants in exon 8, 15, 12, and 16 were most prevalent, while the most common variants were c.892G>A (p.A298T) (n = 9), c.139C>T (p.R47W) (n = 3), c.1205C>T(p.A402V) (n = 3), c.1657A>T (p.I553F) (n = 3), c.1679T>C (p.M560T) (n = 3), c.350A>G (p.D117G) (n = 2), c.762C>G (p.C254W) (n = 2), c.782A>G (P.Y261C) (n = 2), and c.1277C>A (p.T426N) (n = 2).Conclusion: Our results reported five CLCN1-related MC patients, which expanded the clinical and genetic spectrum of MC patients in China. Based on literature review, 43MC Chinese patients with genetic diagnosis have been reported till now, and variants in exon eight were most prevalent in Chinese MC patients while c.892G>A (p.A298T) was probably a founder mutation.</p

    Video_1_Myotonia Congenita: Clinical Characteristic and Mutation Spectrum of CLCN1 in Chinese Patients.MP4

    No full text
    Background:CLCN1-related myotonia congenita (MC) is one of the most common forms of non-dystrophic myotonia, in which muscle relaxation is delayed after voluntary or evoked contraction. However, there is limited data of clinical and molecular spectrum of MC patients in China.Patients and Methods: Five patients with myotonia congenita due to mutations in CLCN1 gene were enrolled, which were identified through trio-whole-exome sequencing or panel-based next-generation sequencing test. The clinical presentation, laboratory data, electrophysiological tests, muscular pathology feature, and genetic results were collected and reviewed. We also searched all previously reported cases of MC patients with genetic diagnosis in Chinese populations, and their data were reviewed.Results: The median onset age of five patients was 3.0 years old, ranging from 1.0 to 5.0 years old, while the median age of admit was 5.0 years old, ranging from 3.5 to 8.8 years old. Five patients complained of muscle stiffness when rising from chairs or starting to climb stairs (5/5, 100.0%), four patients complained of delayed relaxation of their hands after forceful grip (4/5, 80.0%), all of which improved with exercise (warm-up phenomenon) (5/5, 100%). Electromyogram was conducted in five patients, which all revealed myotonic change (100%). Genetic tests revealed nine potential disease-causing variants in CLCN1 gene, including two novel variants: c.962T>A (p.V321E) and c.1250A>T (p.E417V). Literature review showed that 43 MC Chinese patients with genetic diagnosis have been reported till now (including our five patients). Forty-seven variants in CLCN1 gene were found, which consisted of 33 missense variants, 6 nonsense variants, 5 frame-shift variants, and 3 splicing variants. Variants in exon 8, 15, 12, and 16 were most prevalent, while the most common variants were c.892G>A (p.A298T) (n = 9), c.139C>T (p.R47W) (n = 3), c.1205C>T(p.A402V) (n = 3), c.1657A>T (p.I553F) (n = 3), c.1679T>C (p.M560T) (n = 3), c.350A>G (p.D117G) (n = 2), c.762C>G (p.C254W) (n = 2), c.782A>G (P.Y261C) (n = 2), and c.1277C>A (p.T426N) (n = 2).Conclusion: Our results reported five CLCN1-related MC patients, which expanded the clinical and genetic spectrum of MC patients in China. Based on literature review, 43MC Chinese patients with genetic diagnosis have been reported till now, and variants in exon eight were most prevalent in Chinese MC patients while c.892G>A (p.A298T) was probably a founder mutation.</p

    Data_Sheet_1_Balloon Angioplasty vs. Stenting for Symptomatic Intracranial Arterial Stenosis.docx

    No full text
    AimsWe performed a meta-analysis to indirectly compare the treatment effectiveness of balloon angioplasty and stenting for patients with intracranial arterial stenosis.MethodsLiterature searches were performed in well-known databases to identify eligible studies published before January 04, 2021. The incidence of restenosis, transient ischemic attack (TIA), stroke, death, and dissection after balloon angioplasty or stenting were pooled. An indirect comparison of balloon angioplasty vs. stenting was performed, and the ratios of incidence (RIs) with 95% confidence intervals (CIs) were calculated using the random-effects model.Results120 studies that recruited 10,107 patients with intracranial arterial stenosis were included. The pooled incidence of restenosis after balloon angioplasty and stenting were 13% (95%CI: 8-17%) and 11% (95%CI: 9-13%), respectively, with no significant difference between them (RI: 1.18; 95%CI: 0.78–1.80; P = 0.435). Moreover, the pooled incidence of TIA after balloon angioplasty and stenting was 3% (95%CI: 0–6%) and 4% (95%CI: 3%-5%), and no significant difference was observed (RI: 0.75; 95%CI: 0.01–58.53; P = 0.897). The pooled incidence of stroke after balloon angioplasty and stenting was 7% (95%CI: 5–9%) and 8% (95%CI: 7–9%), respectively, and the difference between groups was found to be statistically insignificant (RI: 0.88; 95%CI: 0.64–1.20; P = 0.413). Additionally, the pooled incidence of death after balloon angioplasty and stenting was 2% (95%CI: 1–4%) and 2% (95%CI: 1–2%), with no significant difference between groups (RI: 1.00; 95%CI: 0.44–2.27; P = 1.000). Finally, the pooled incidence of dissection after balloon angioplasty and stenting was 13% (95%CI: 5–22%) and 3% (95%CI: 2–5%), respectively, and balloon angioplasty was associated with a higher risk of dissection than that with stenting for patients with intracranial arterial stenosis (RI: 4.33; 95%CI: 1.81–10.35; P = 0.001).ConclusionThis study found that the treatment effectiveness of balloon angioplasty and stenting were similar for patients with symptomatic intracranial arterial stenosis.</p

    Combinatorial Identification of Hydrides in a Ligated Ag<sub>40</sub> Nanocluster with Noncompact Metal Core

    No full text
    No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides’ location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials

    Combinatorial Identification of Hydrides in a Ligated Ag<sub>40</sub> Nanocluster with Noncompact Metal Core

    No full text
    No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides’ location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials

    Combinatorial Identification of Hydrides in a Ligated Ag<sub>40</sub> Nanocluster with Noncompact Metal Core

    No full text
    No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides’ location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials

    Combinatorial Identification of Hydrides in a Ligated Ag<sub>40</sub> Nanocluster with Noncompact Metal Core

    No full text
    No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides’ location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials

    Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration

    Get PDF
    <div><p>Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.</p> </div

    miR-133 downregulates Cyclin D1 expression via direct targeting Sp1.

    No full text
    <p>(A) Determination of Sp1 effect on the promoter activity of Cyclin D1. C2C12 myoblasts were cotransfected with a reporter containing Cyclin D1 promoter, and Sp1 expression vector (MSCV-Sp1), or control vector (MSCV), or Sp1 specific siRNA (siSp1), or negative control siRNA (NC) as indicated. Error bars represent the SD of three independent experiments. (B and C) Real-time RT-PCR analysis of Sp1 and Cyclin D1 mRNA expression in C2C12 myoblasts transfected with MSCV-Sp1 or MSCV (B), or transfected with siSp1 or NC (C), as indicated. Error bars represent the SD of three independent experiments. (D and E) Western blot analysis of Sp1 and Cyclin D1 protein level in C2C12 myoblasts transfected with siSp1 or NC (D), or MSCV-Sp1 or MSCV.(E). (F and G) Growth curves of C2C12 myoblasts were determined by MTT assay. Cells were transfected with MSCV-Sp1 or MSCV (F), or transfected with siSp1 or NC (G). Error bars represent the SD of three independent experiments. (H) Cell cycle analysis of C2C12 myoblasts transfected with siSp1 or NC as indicated. Data shown are from a typical experiment performed. **p<0.01.</p
    corecore