12 research outputs found
Facile Construction of Yttrium Pentasulfides from Yttrium Alkyl Precursors: Synthesis, Mechanism, and Reactivity
Treatment of the yttrium dialkyl
complex Tp<sup>Me2</sup>YÂ(CH<sub>2</sub>Ph)<sub>2</sub>Â(THF) (Tp<sup>Me2</sup> = triÂ(3,5 dimethylpyrazolyl)Âborate, THF = tetrahydrofuran) with
S<sub>8</sub> in a 1:1 molar ratio in THF at room temperature afforded
a yttrium pentasulfide Tp<sup>Me2</sup>YÂ(κ<sub>4</sub>-S<sub>5</sub>) (THF) (<b>1</b>) in 93% yield. The yttrium monoalkyl
complex Tp<sup>Me2</sup>CpYCH<sub>2</sub>PhÂ(THF) reacted with
S<sub>8</sub> in a 1:0.5 molar ratio under the same conditions to
give another yttrium pentasulfide [(Tp<sup>Me2</sup>)<sub>2</sub>Y]<sup>+</sup>Â[Cp<sub>2</sub>YÂ(κ<sub>4</sub>-S<sub>5</sub>)]<sup>−</sup> (<b>10</b>) in low yield. Further investigations
indicated that the S<sub>5</sub><sup>2–</sup> anion facilely
turned into the corresponding thioethers or organic disulfides, and
released the redundant S<sub>8</sub>, when it reacted with some electrophilic
reagents. The mechanism for the formation of the S<sub>5</sub><sup>2–</sup> ligand has been investigated by the controlling of
the reaction stoichiometric ratios and the stepwise reactions
Facile Construction of Yttrium Pentasulfides from Yttrium Alkyl Precursors: Synthesis, Mechanism, and Reactivity
Treatment of the yttrium dialkyl
complex Tp<sup>Me2</sup>YÂ(CH<sub>2</sub>Ph)<sub>2</sub>Â(THF) (Tp<sup>Me2</sup> = triÂ(3,5 dimethylpyrazolyl)Âborate, THF = tetrahydrofuran) with
S<sub>8</sub> in a 1:1 molar ratio in THF at room temperature afforded
a yttrium pentasulfide Tp<sup>Me2</sup>YÂ(κ<sub>4</sub>-S<sub>5</sub>) (THF) (<b>1</b>) in 93% yield. The yttrium monoalkyl
complex Tp<sup>Me2</sup>CpYCH<sub>2</sub>PhÂ(THF) reacted with
S<sub>8</sub> in a 1:0.5 molar ratio under the same conditions to
give another yttrium pentasulfide [(Tp<sup>Me2</sup>)<sub>2</sub>Y]<sup>+</sup>Â[Cp<sub>2</sub>YÂ(κ<sub>4</sub>-S<sub>5</sub>)]<sup>−</sup> (<b>10</b>) in low yield. Further investigations
indicated that the S<sub>5</sub><sup>2–</sup> anion facilely
turned into the corresponding thioethers or organic disulfides, and
released the redundant S<sub>8</sub>, when it reacted with some electrophilic
reagents. The mechanism for the formation of the S<sub>5</sub><sup>2–</sup> ligand has been investigated by the controlling of
the reaction stoichiometric ratios and the stepwise reactions
Isoprene Regioblock Copolymerization: Switching the Regioselectivity by the in Situ Ancillary Ligand Transmetalation of Active Yttrium Species
Regioblock
copolymers of single alkenes hold great promise for
modifying the properties of polymer materials but remain scarce due
to the lack of viable synthetic methodologies. Here we describe a
method for switching the regioselectivity of the cationic yttrium-catalyzed
polymerization of conjugated dienes during chain growth, which leads
to the formation of a series of di- and multiregioblock homo/mixed-copolymers
with different properties from isoprene and myrcene. Mechanistic data
demonstrate that the amidinate yttrium active species [L<sup>b</sup>YPIP<sup>3,4</sup>]<sup>+</sup> (L<sup>b</sup> = [PhCÂ(NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)<sub>2</sub>]<sup>−</sup>) changes to the tetramethylaluminate
yttrium active center {L<sup>s</sup>YPIP<sup>3,4</sup>}<sup>+</sup> (L<sup>s</sup> = [AlMe<sub>4</sub>]<sup>−</sup>) in situ
by amidinate ligand transfer in the presence of AlMe<sub>3</sub>.
The transformation of active species switches the regioselectivity
from 3,4- to <i>cis</i>-1,4 polymerization while the polymer
chain keeps propagating. Al<sup><i>i</i></sup>Bu<sub>3</sub> not only functions as a chain transfer agent but also plays a key
role in preventing the chain termination during the amidinate transmetalation.
These results highlight the versatility and potential utility of a
strategy for the design and precision control of polymer structure
and physical properties
Me–Si Bond Cleavage of Anionic Bis(trimethylsilyl)amide in Scorpionate-Anchored Rare Earth Metal Complexes
A novel Tp<sup>Me2</sup>-supported (Tp<sup>Me2</sup> =
triÂ(3,5-dimethylpyrazolyl)Âborate) rare earth metal complex promoted
Me–Si cleavage of the bisÂ(trimethylsilyl) amide ligand ([(Me<sub>3</sub>Si)<sub>2</sub>N]<sup>−</sup>) was observed. Reaction
of Tp<sup>Me2</sup>LnCl<sub>2</sub> with 2 equiv of KÂ[(RN)<sub>2</sub>CNÂ(SiMe<sub>3</sub>)<sub>2</sub>] (KGua) gave the methylamidinate
complexes Tp<sup>Me2</sup>LnÂ[(RN)<sub>2</sub>CMe]Â[NÂ(SiMe<sub>3</sub>)<sub>2</sub>] (R = isopropyl, Ln = Y (<b>1</b><sup><b>Y</b></sup>), Er (<b>1</b><sup><b>Er</b></sup>); R = cyclohexyl,
Ln = Y (<b>2</b><sup><b>Y</b></sup>)) in moderate yields.
In contrast, Tp<sup>Me2</sup>YCl<sub>2</sub>(THF) reacted with 1 equiv
of KGua to afford a C–N cleavage product Tp<sup>Me2</sup>YÂ(Cl)ÂNÂ(SiMe<sub>3</sub>)<sub>2</sub>(THF) (<b>4</b>), indicating that this
guanidinate ligand is not stable in the yttrium complex with the Tp<sup>Me2</sup> ligand, and a carbodiimide deinsertion takes place easily.
The mechanism for the formation of complexes <b>1</b> and <b>2</b> was also studied by controlling the substrate stoichiometry
and the reaction sequence and revealed that the bisÂ(trimethylsilyl)Âamine
anion NÂ(SiMe<sub>3</sub>)<sub>2</sub><sup>–</sup> can undergo
two routes of γ-methyl deprotonation and Si–Me cleavage
for its functionalizations. All these new complexes were characterized
by elemental analysis and spectroscopic methods, and their solid-state
structures were also confirmed by single-crystal X-ray diffraction
Reactivity of Scorpionate-Anchored Yttrium Alkyl Complex toward Organic Nitriles
The mixed Tp<sup>Me2</sup>/Cp-supported yttrium monoalkyl
(Tp<sup>Me2</sup>)ÂCpYCH<sub>2</sub>PhÂ(THF) (<b>1</b>) reacted
with 1 equiv of PhCN in THF at room temperature to afford the imine–enamine
tautomer (Tp<sup>Me2</sup>)ÂCpYÂ(NÂ(H)ÂCÂ(Ph)î—»CHPh)Â(THF) (<b>2</b>) and the insertion product (Tp<sup>Me2</sup>)ÂCpYÂ(Nî—»CÂ(CH<sub>2</sub>Ph)ÂPh)Â(THF) (<b>3</b>), in 61% and 12% isolated yields,
respectively. <b>2</b> further reacted with PhCN in toluene
at 120 °C to give the N–H bond addition product (Tp<sup>Me2</sup>)ÂCpYÂ(NÂ(H)ÂCÂ(Ph)ÂNCÂ(Ph)î—»CHPh) (<b>4</b>). Treatment
of <b>1</b> with 1 equiv of anthranilonitrile produced the dimer
[(Tp<sup>Me2</sup>)ÂCpYÂ(μ-NHC<sub>6</sub>H<sub>4</sub>CN)]<sub>2</sub> (<b>5</b>). The monomer product (Tp<sup>Me2</sup>)ÂCpYÂ(NHC<sub>6</sub>H<sub>4</sub>CN)Â(HMPA) (<b>6</b>) can be obtained through
the coordination of HMPA (hexamethylphosphoric triamide). The reaction
of <b>5</b> with <b>1</b> in THF at room temperature gave
the cyano group insertion product [(Tp<sup>Me2</sup>)ÂCpYÂ(THF)]<sub>2</sub>(μ-NHC<sub>6</sub>H<sub>4</sub>CÂ(CH<sub>2</sub>Ph)î—»N)
(<b>7</b>). However, this reaction under the heating conditions
gave an unexpected rearrangement product, (Tp<sup>Me2</sup>)ÂCpYÂ(THF)Â(η<sup>2</sup>-NHC<sub>6</sub>H<sub>4</sub>CÂ(CH<sub>2</sub>Ph)î—»NH)
(<b>8</b>). <b>5</b> further reacted with <i>o</i>-aminobenzonitrile at 120 °C to afford the nucleophilic addition/cyclization
product Tp<sup>Me2</sup>YÂ[κ<sup>3</sup>-(4-NHî—»(C<sub>8</sub>N<sub>2</sub>H<sub>4</sub>)Â(2-NHC<sub>6</sub>H<sub>4</sub>)]Â(HMPA) (<b>9</b>), accompanied with the elimination of the
Cp ring. These results indicated that the yttrium alkyl complex exhibits
high activity toward organic nitriles and reveals some unusual transformations
during the insertion process. All these new complexes were characterized
by elemental analysis and spectroscopic methods, and their solid-state
structures were also confirmed by single-crystal X-ray diffraction
analysis
Rare-Earth-Metal-Catalyzed Addition of Terminal Monoalkynes and Dialkynes with Aryl-Substituted Symmetrical or Unsymmetrical Carbodiimides
A high-efficiency and atom-economic
route for the synthesis of
N-aryl-substituted propiolamidines was established through the addition
of terminal alkynes with aryl-substituted symmetrical or unsymmetrical
carbodiimides catalyzed by mixed Tp<sup>Me2</sup>/Cp rare-earth-metal
alkyl complexes (Tp<sup>Me2</sup>)ÂCpLnCH<sub>2</sub>PhÂ(THF) (<b>1</b><sup><b>Ln</b></sup>). Moreover, the gadolinium alkyl
complex <b>1</b><sup><b>Gd</b></sup> can also serve as
a catalyst for the double addition of dialkynes with carbodiimides.
Mechanism studies indicated that the variable coordination modes (κ<sup>3</sup> or κ<sup>2</sup>) of the Tp<sup>Me2</sup> ligand on
the rare-earth-metal species may play an important role in the catalytic
cycles
Versatile Reactivity of β‑Diketiminato-Supported Yttrium Dialkyl Complex toward Aromatic N‑Heterocycles
The reactions of β-diketiminatoyttrium
dialkyl complex LYÂ(CH<sub>2</sub>Ph)<sub>2</sub>(THF) (<b>1</b>, L = [{NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)}<sub>2</sub>CH]<sup>−</sup>) with a series
of aromatic N-heterocycles
such as 2-phenylpyridine, benzothiazole, and benzoxazole were studied
and displayed discrete reactivity including C–H activation,
C–C coupling, ring-opening/insertion, and dearomatization.
The reaction of <b>1</b> with 2-phenylpyridine in 1:2 molar
ratio in THF at 30 °C for 14 days afforded a structurally characterized
metal complex, LYÂ(η<sup>2</sup>-<i>N,C</i>-C<sub>5</sub>H<sub>4</sub>NC<sub>6</sub>H<sub>4</sub>-2)Â[C<sub>5</sub>H<sub>4</sub>NÂ(CH<sub>2</sub>Ph-4)ÂPh] (<b>2</b>), in 73% isolated
yield, indicating the occurrence of phenyl ring CÂ(sp<sup>2</sup>)–H
activation and pyridine ring 1,4-addition/dearomatization. However,
when this reaction was done at 5 °C for 7 days, it gave the pyridine
ring 1,2-addition product LYÂ(η<sup>2</sup>-<i>N,C</i>-C<sub>5</sub>H<sub>4</sub>NC<sub>6</sub>H<sub>4</sub>-2)Â[C<sub>5</sub>H<sub>4</sub>NÂ(CH<sub>2</sub>Ph-2)ÂPh] (<b>3</b>) in
54% isolated yield. Further investigations revealed that complex <b>2</b> is the thermodynamic controlled product and complex <b>3</b> is the kinetically controlled product; <b>3</b> converted
slowly into <b>2</b>, as confirmed by <sup>1</sup>H NMR spectroscopy.
The equimolar reaction of <b>1</b> with benzothiazole or benzoxazole
produced two C–C coupling/ring-opening/insertion products,
LYÂ[η<sup>2</sup>-<i>S,N</i>-SC<sub>6</sub>H<sub>4</sub>NCHÂ(CH<sub>2</sub>Ph)<sub>2</sub>]Â(THF) (<b>4</b>) and {LYÂ[μ-η<sup>2</sup>:η<sup>1</sup>-<i>O,N</i>-OC<sub>6</sub>H<sub>4</sub>NCHÂ(CH<sub>2</sub>Ph)<sub>2</sub>]}<sub>2</sub> (<b>5</b>), in 84% and 78% isolated yields, respectively
Reactivity of Homoleptic Dianionic β‑Diketiminato-Supported Yttrium Complexes toward CS<sub>2</sub>: Construction of Neutral or Anionic Dihydropyridinethione
The
mixed mono- and dianionic β-diketiminato yttrium complex
[η<sup>2</sup>-N,N-{NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>ÂC<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)}<sub>2</sub>ÂCH]ÂYÂ[η<sup>2</sup>-N,N-NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>ÂC<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)ÂCHCÂ(î—»CH<sub>2</sub>)ÂNÂ(C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-2,6)] (<b>1</b>) was synthesized in almost
quantitive yield by the metathesis reaction of β-diketiminato
potassium with YCl<sub>3</sub> in a 3:1 molar ratio in THF at room
temperature. Complex <b>1</b> reacted with 1 equiv of KCH<sub>2</sub>Ph under the same conditions to afford a linear dianionic
β-diketiminato-supported YÂ(III)/​KÂ(I) heterobimetallic
polymer {YÂ[μ-η<sup>2</sup>:​η<sup>1</sup>-N,N-NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>ÂC<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)ÂCHCÂ(î—»CH<sub>2</sub>)ÂNÂ(C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-2,6)]<sub>2</sub>-KÂ(THF)<sub>3</sub>}<sub>∞</sub> (<b>2</b>). Moreover, <b>2</b> can be transformed into
the corresponding salt-type complexes [KÂ([2.2.2]Âcryptand)]<sup>+</sup>Â{[η<sup>2</sup>-N,N-NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>ÂC<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)ÂCHCÂ(î—»CH<sub>2</sub>)ÂNÂ(C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-2,6)]<sub>2</sub>ÂY}<sup>−</sup> (<b>3</b>) and [<sup><i>n</i></sup>Bn<sub>4</sub>N]<sup>+</sup>Â{[η<sup>2</sup>-N,N-NÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>ÂC<sub>6</sub>H<sub>3</sub>)ÂCÂ(Me)ÂCHCÂ(î—»CH<sub>2</sub>)ÂNÂ(C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-2,6)]<sub>2</sub>ÂY}<sup>−</sup> (<b>4</b>) in high yields by the reactions of <b>2</b> with [2,2,2]-cryptand or <sup><i>n</i></sup>Bu<sub>4</sub>ÂNCl in THF, respectively. The reaction of <b>3</b> and <b>4</b> with 2 equiv of CS<sub>2</sub> in THF at amibent temperature
gave the anionic or neutral aryl-substituted dihydroÂpyridineÂthione
[KÂ([2.2.2]Âcryptand)]<sup>+</sup>Â[2-S,4-NÂ(Ar),6-MeÂC<sub>5</sub>H<sub>2</sub>NÂ(Ar)]<sup>−</sup>·[2-S,4-NÂ(H)ÂAr,6-MeÂC<sub>5</sub>H<sub>2</sub>NÂ(Ar)] (<b>5</b>) and 2-S,4-NÂ(H)ÂAr,6-MeÂC<sub>5</sub>H<sub>2</sub>NÂ(Ar) (<b>6</b>) in moderate yields, accompanied
by unidentified materials containing Y<sup>3+</sup> ions, respectively.
The formation of <b>5</b> and <b>6</b> revealed an intermolecular
nucleophilic addition/​cyclization and some chemical bond transformations
such as C–C and C–N formation, CS cleavage,
and 1,3-hydrogen shift occurred in the above reactions. The molecular
structures of all of these new complexes <b>1</b>–<b>6</b> have been determined through X-ray single-crystal diffraction
analysis
Reactivity of Scorpionate-Anchored Yttrium Alkyl Primary Amido Complexes toward Carbodiimides. Insertion Selectivity of Y–NHAr and Y–CH<sub>2</sub>Ph Bonds
The Tp<sup>Me2</sup>-supported yttrium
dialkyl Tp<sup>Me2</sup>YÂ(CH<sub>2</sub>Ph)<sub>2</sub>(THF) (Tp<sup>Me2</sup> = triÂ(3,5-dimethylpyrazolyl)Âborate)
reacted with 1 equiv of ArNH<sub>2</sub> in THF at room temperature
to afford the yttrium alkyl primary amido complexes Tp<sup>Me2</sup>YNHArÂ(CH<sub>2</sub>Ph)Â(THF) (Ar = Ph (<b>1</b>), C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-<i>2</i>,<i>6</i> (<b>2</b>)) in 84% and 88% isolated
yields, respectively. Complex <b>1</b> reacted with <sup><i>i</i></sup>PrNî—»Cî—»N<sup><i>i</i></sup>Pr in THF at room temperature to give a yttrium dianionic guanidinate
complex, Tp<sup>Me2</sup>YÂ[(<sup><i>i</i></sup>PrN)<sub>2</sub>Cî—»NPh]Â(THF)<sub>2</sub> (<b>3</b>, 74%). However,
the reaction of <b>1</b> with ArNî—»Cî—»NAr (Ar =
C<sub>6</sub>H<sub>3</sub>-<sup><i>i</i></sup>Pr<sub>2</sub>-<i>2</i>,<i>6</i>) in the same conditions produced
a Y–C bond insertion product, Tp<sup>Me2</sup>YÂ[(ArN)<sub>2</sub>CCH<sub>2</sub>Ph]Â(NHPh) (<b>4</b>, 87%). Moreover, treatment
of <b>2</b> with 1 equiv of <sup><i>i</i></sup>PrNî—»Cî—»N<sup><i>i</i></sup>Pr in THF at room temperature afforded two
yttrium complex, Tp<sup>Me2</sup>YÂ[(<sup><i>i</i></sup>PrN)ÂCî—»NAr]Â(THF)
(<b>5</b>) and Tp<sup>Me2</sup>YÂ[(<sup><i>i</i></sup>PrN)<sub>2</sub>CCH<sub>2</sub>Ph]Â(NHAr) (<b>6</b>), in 58%
and 19% isolated yields, respectively. These results indicated that
carbodiimide can selectively insert into the Y–CH<sub>2</sub>Ph and Y–NHAr σ-bonds of Tp<sup>Me2</sup>-supported
yttrium alkyl primary amido complexes Tp<sup>Me2</sup>YNHArÂ(CH<sub>2</sub>Ph)Â(THF), and this selectivity depends on the steric hindrance
of the substituent groups <i>R</i> of cabodiimides and the
primary amido ligands. All these new complexes were characterized
by elemental analysis and spectroscopic methods, and their solid-state
structures except <b>1</b> were also confirmed by single-crystal
X-ray diffraction analysis
Synthesis, Structural Characterization, and Reactivity of Mono(amidinate) Rare-Earth-Metal Bis(aminobenzyl) Complexes
Three kinds of solvated lithium amidinates
with different coordination
models were obtained via recrystallization of [PhCÂ(NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)<sub>2</sub>]ÂLiÂ(THF) (<b>1a</b>) in different solvents. Treatment of <i>o</i>-Me<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Li with LLnCl<sub>2</sub>(THF)<sub><i>n</i></sub> (<b>2</b>; L = [PhCÂ(NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)<sub>2</sub>]<sup>−</sup> (NCN<sup>dipp</sup>), [<i>o</i>-Me<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>CÂ(NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)<sub>2</sub>]<sup>−</sup> (NCN<sup>dipp</sup>′)) formed in situ from reaction of LnCl<sub>3</sub>(THF)<sub><i>x</i></sub> with LLiÂ(THF) gave the rare-earth-metal
bisÂ(aminobenzyl) complexes LLnÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)<sub>2</sub> (L = NCN<sup>dipp</sup>, Ln = Sc (<b>3a</b>), Y (<b>3b</b>), Lu (<b>3c</b>); L = NCN<sup>dipp</sup>′, Ln = Sc (<b>3d</b>), Lu
(<b>3e</b>)) in high yields. Reactions of complexes <b>3</b> with CO<sub>2</sub>, PhNCO, 2,6-diisopropylaniline, and S have been
explored. CO<sub>2</sub> inserted into each Ln–C bond of complexes <b>3a</b>–<b>c</b> to form the dual-core complexes [(NCN<sup>dipp</sup>)ÂScÂ(μ-η<sup>1</sup>:η<sup>1</sup>-O<sub>2</sub>CCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)<sub>2</sub>]<sub>2</sub> (<b>4a</b>) and [(NCN<sup>dipp</sup>)ÂLnÂ(μ-η<sup>1</sup>:η<sup>2</sup>-O<sub>2</sub>CCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)Â(μ-η<sup>1</sup>:η<sup>1</sup>-O<sub>2</sub>CCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)]<sub>2</sub> (Ln = Y (<b>4b</b>), Lu (<b>4c</b>)). The reaction of <b>3b</b>,<b>c</b>,<b>e</b> with PhNCO produced LLuÂ[OCÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)ÂNPh]<sub>2</sub>(thf) (L = NCN<sup>dipp</sup>, Ln = Y (<b>5b</b>), Lu (<b>5c</b>); L = NCN<sup>dipp</sup>′, Ln = Lu (<b>5e</b>)). Protonolysis of <b>3a</b>,<b>b</b> by 2,6-diisopropylaniline formed straightforwardly
the μ<sub>2</sub>-imido complexes [(NCN<sup>dipp</sup>)ÂLnÂ(μ-NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)]<sub>2</sub> (Ln = Sc (<b>6a</b>), Lu (<b>6c</b>)). Reaction
of <b>3e</b> with S<sub>8</sub> afforded the sulfur insertion
products (NCN<sup>dipp</sup>′)ÂLuÂ(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)Â(SCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)Â(thf) (<b>7e</b>) and (NCN<sup>dipp</sup>′)ÂLuÂ(SCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)<sub>2</sub>(thf)<sub>2</sub> (<b>7f</b>) in high yields, respectively,
depending on the stoichiometric ratio. All of these complexes were
fully characterized by elemental analysis, NMR spectroscopy, and X-ray
structural determinations