1,220 research outputs found

    RACE: Large-scale ReAding Comprehension Dataset From Examinations

    Full text link
    We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines.Comment: EMNLP 201

    Diagnosing Human-object Interaction Detectors

    Full text link
    Although we have witnessed significant progress in human-object interaction (HOI) detection with increasingly high mAP (mean Average Precision), a single mAP score is too concise to obtain an informative summary of a model's performance and to understand why one approach is better than another. In this paper, we introduce a diagnosis toolbox for analyzing the error sources of the existing HOI detection models. We first conduct holistic investigations in the pipeline of HOI detection, consisting of human-object pair detection and then interaction classification. We define a set of errors and the oracles to fix each of them. By measuring the mAP improvement obtained from fixing an error using its oracle, we can have a detailed analysis of the significance of different errors. We then delve into the human-object detection and interaction classification, respectively, and check the model's behavior. For the first detection task, we investigate both recall and precision, measuring the coverage of ground-truth human-object pairs as well as the noisiness level in the detections. For the second classification task, we compute mAP for interaction classification only, without considering the detection scores. We also measure the performance of the models in differentiating human-object pairs with and without actual interactions using the AP (Average Precision) score. Our toolbox is applicable for different methods across different datasets and available at https://github.com/neu-vi/Diag-HOI

    ADAPTIVE TRANSMISSION POWER IN LOW-POWER AND LOSSY NETWORK

    Get PDF
    Techniques are provided herein for intelligent transmission power control under different transmission patterns in a connected grid mesh. The transmission patterns include asynchronized transmission, broadcast transmission, and unicast transmission. They also provide a mechanism to help data packets compete against interference on specific channels and help high priority Quality of Service (QoS) packet have a greater chance to be received when congestion occurs. This enables the connected grid mesh to achieve higher reliability of communication with efficient power consumption

    Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning

    Full text link
    While the Segment Anything Model (SAM) excels in semantic segmentation for general-purpose images, its performance significantly deteriorates when applied to medical images, primarily attributable to insufficient representation of medical images in its training dataset. Nonetheless, gathering comprehensive datasets and training models that are universally applicable is particularly challenging due to the long-tail problem common in medical images. To address this gap, here we present a Self-Sampling Meta SAM (SSM-SAM) framework for few-shot medical image segmentation. Our innovation lies in the design of three key modules: 1) An online fast gradient descent optimizer, further optimized by a meta-learner, which ensures swift and robust adaptation to new tasks. 2) A Self-Sampling module designed to provide well-aligned visual prompts for improved attention allocation; and 3) A robust attention-based decoder specifically designed for medical few-shot learning to capture relationship between different slices. Extensive experiments on a popular abdominal CT dataset and an MRI dataset demonstrate that the proposed method achieves significant improvements over state-of-the-art methods in few-shot segmentation, with an average improvements of 10.21% and 1.80% in terms of DSC, respectively. In conclusion, we present a novel approach for rapid online adaptation in interactive image segmentation, adapting to a new organ in just 0.83 minutes. Code is publicly available on GitHub upon acceptance

    Direct Superpoints Matching for Fast and Robust Point Cloud Registration

    Full text link
    Although deep neural networks endow the downsampled superpoints with discriminative feature representations, directly matching them is usually not used alone in state-of-the-art methods, mainly for two reasons. First, the correspondences are inevitably noisy, so RANSAC-like refinement is usually adopted. Such ad hoc postprocessing, however, is slow and not differentiable, which can not be jointly optimized with feature learning. Second, superpoints are sparse and thus more RANSAC iterations are needed. Existing approaches use the coarse-to-fine strategy to propagate the superpoints correspondences to the point level, which are not discriminative enough and further necessitates the postprocessing refinement. In this paper, we present a simple yet effective approach to extract correspondences by directly matching superpoints using a global softmax layer in an end-to-end manner, which are used to determine the rigid transformation between the source and target point cloud. Compared with methods that directly predict corresponding points, by leveraging the rich information from the superpoints matchings, we can obtain more accurate estimation of the transformation and effectively filter out outliers without any postprocessing refinement. As a result, our approach is not only fast, but also achieves state-of-the-art results on the challenging ModelNet and 3DMatch benchmarks. Our code and model weights will be publicly released

    Unsupervised Deep Cross-Language Entity Alignment

    Full text link
    Cross-lingual entity alignment is the task of finding the same semantic entities from different language knowledge graphs. In this paper, we propose a simple and novel unsupervised method for cross-language entity alignment. We utilize the deep learning multi-language encoder combined with a machine translator to encode knowledge graph text, which reduces the reliance on label data. Unlike traditional methods that only emphasize global or local alignment, our method simultaneously considers both alignment strategies. We first view the alignment task as a bipartite matching problem and then adopt the re-exchanging idea to accomplish alignment. Compared with the traditional bipartite matching algorithm that only gives one optimal solution, our algorithm generates ranked matching results which enabled many potentials downstream tasks. Additionally, our method can adapt two different types of optimization (minimal and maximal) in the bipartite matching process, which provides more flexibility. Our evaluation shows, we each scored 0.966, 0.990, and 0.996 Hits@1 rates on the DBP15K dataset in Chinese, Japanese, and French to English alignment tasks. We outperformed the state-of-the-art method in unsupervised and semi-supervised categories. Compared with the state-of-the-art supervised method, our method outperforms 2.6% and 0.4% in Ja-En and Fr-En alignment tasks while marginally lower by 0.2% in the Zh-En alignment task.Comment: 17 pages,5 figures, Accepted by ECML PKDD 2023(Research Track
    • …
    corecore