33 research outputs found
A Novel Uplink Data Transmission Scheme For Small Packets In Massive MIMO System
Intelligent terminals often produce a large number of data packets of small
lengths. For these packets, it is inefficient to follow the conventional medium
access control (MAC) protocols because they lead to poor utilization of service
resources. We propose a novel multiple access scheme that targets massive
multiple-input multiple-output (MIMO) systems based on compressive sensing
(CS). We employ block precoding in the time domain to enable the simultaneous
transmissions of many users, which could be even more than the number of
receive antennas at the base station. We develop a block-sparse system model
and adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the
transmitted signals. Conditions for data recovery guarantees are identified and
numerical results demonstrate that our scheme is efficient for uplink small
packet transmission.Comment: IEEE/CIC ICCC 2014 Symposium on Signal Processing for Communication
Joint Domain Based Massive Access for Small Packets Traffic of Uplink Wireless Channel
The fifth generation (5G) communication scenarios such as the cellular
network and the emerging machine type communications will produce massive small
packets. To support massive connectivity and avoid signaling overhead caused by
the transmission of those small packets, this paper proposes a novel method to
improve the transmission efficiency for massive connections of wireless uplink
channel. The proposed method combines compressive sensing (CS) with power
domain NOMA jointly, especially neither the scheduling nor the centralized
power allocation is necessary in the method. Both the analysis and simulation
show that the method can support up to two or three times overloading.Comment: 6 pages, 5 figures.submitted to globecom 201
Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection
Modern mobile terminals often produce a large number of small data packets.
For these packets, it is inefficient to follow the conventional medium access
control protocols because of poor utilization of service resources. We propose
a novel multiple access scheme that employs block-spreading based precoding at
the transmitters and sparsity-aware detection schemes at the base station. The
proposed scheme is well suited for the emerging massive multiple-input
multiple-output (MIMO) systems, as well as conventional cellular systems with a
small number of base-station antennas. The transmitters employ precoding in
time domain to enable the simultaneous transmissions of many users, which could
be even more than the number of receive antennas at the base station. The
system is modeled as a linear system of equations with block-sparse unknowns.
We first adopt the block orthogonal matching pursuit (BOMP) algorithm to
recover the transmitted signals. We then develop an improved algorithm, named
interference cancellation BOMP (ICBOMP), which takes advantage of error
correction and detection coding to perform perfect interference cancellation
during each iteration of BOMP algorithm. Conditions for guaranteed data
recovery are identified. The simulation results demonstrate that the proposed
scheme can accommodate more simultaneous transmissions than conventional
schemes in typical small-packet transmission scenarios.Comment: submitted to IEEE Transactions on Wireless Communication
Many Access for Small Packets Based on Precoding and Sparsity-aware Recovery
Modern mobile terminals produce massive small data packets. For these
short-length packets, it is inefficient to follow the current multiple access
schemes to allocate transmission resources due to heavy signaling overhead. We
propose a non-orthogonal many-access scheme that is well suited for the future
communication systems equipped with many receive antennas. The system is
modeled as having a block-sparsity pattern with unknown sparsity level (i.e.,
unknown number of transmitted messages). Block precoding is employed at each
single-antenna transmitter to enable the simultaneous transmissions of many
users. The number of simultaneously served active users is allowed to be even
more than the number of receive antennas. Sparsity-aware recovery is designed
at the receiver for joint user detection and symbol demodulation. To reduce the
effects of channel fading on signal recovery, normalized block orthogonal
matching pursuit (BOMP) algorithm is introduced, and based on its approximate
performance analysis, we develop interference cancellation based BOMP (ICBOMP)
algorithm. The ICBOMP performs error correction and detection in each iteration
of the normalized BOMP. Simulation results demonstrate the effectiveness of the
proposed scheme in small packet services, as well as the advantages of ICBOMP
in improving signal recovery accuracy and reducing computational cost.Comment: 30 pages 8 figures ,submited to tco
The heme-p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis
Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic
ALS-Associated E478G Mutation in Human OPTN (Optineurin) Promotes Inflammation and Induces Neuronal Cell Death
Amyotrophic Lateral Sclerosis (ALS) is a group of neurodegenerative disorders that featured with the death of motor neurons, which leads to loss of voluntary control on muscles. The etiologies vary among different subtypes of ALS, and no effective management or medication could be provided to the patients, with the underlying mechanisms incompletely understood yet. Mutations in human Optn (Optineurin), particularly E478G, have been found in many ALS patients. In this work, we report that NF-κB activity was increased in Optn knockout (Optn−/−) MEF (mouse embryonic fibroblast) cells expressing OPTN of different ALS-associated mutants especially E478G. Inflammation was significantly activated in mice infected with lenti-virus that allowed overexpression of OPTNE478G mutation in the motor cortex, with marked increase in the secretion of pro-inflammatory cytokines as well as neuronal cell death. Our work with both cell and animal models strongly suggested that anti-inflammation treatment could represent a powerful strategy to intervene into disease progression in ALS patients who possess the distinctive mutations in OPTN gene
Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function
Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy
Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection
Modern mobile terminals often produce a large number of small data packets. For these packets, it is inefficient to follow the conventional medium access control protocols because of poor utilization of service resources. We propose a novel multiple access scheme that employs block-spreading based precoding at the transmitters and sparsity-aware detection schemes at the base station. The proposed scheme is well suited for the emerging massive multiple-input multiple-output (MIMO) systems, as well as conventional cellular systems with a small number of base-station antennas. The transmitters employ precoding in time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. The system is modeled as a linear system of equations with block-sparse unknowns. We first adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. We then develop an improved algorithm, named interference cancellation BOMP (ICBOMP), which takes advantage of error correction and detection coding to perform perfect interference cancellation during each iteration of BOMP algorithm. Conditions for guaranteed data recovery are identified. The simulation results demonstrate that the proposed scheme can accommodate more simultaneous transmissions than conventional schemes in typical small-packet transmission scenarios.This is a pre-print of the article Xie, Ronggui, Huarui Yin, Xiaohui Chen, and Zhengdao Wang. "Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection." arXiv preprint arXiv:1409.1513 (2014). Posted with permission.</p
Many Access for Small Packets Based on Precoding and Sparsity-Aware Recovery
Modern mobile terminals produce massive small data packets. For these short-length packets, it is inefficient to follow the current multiple access schemes to allocate transmission resources due to heavy signaling overhead. We propose a non-orthogonal many-access scheme that is well suited for the future communication systems equipped with many receive antennas. The system is modeled as having a block-sparsity pattern with unknown sparsity level (i.e., unknown number of transmitted messages). Block precoding is employed at each single-antenna transmitter to enable the simultaneous transmissions of many users. The number of simultaneously served active users is allowed to be even more than the number of receive antennas. Sparsity-aware recovery is designed at the receiver for joint user detection and symbol demodulation. To reduce the effects of channel fading on signal recovery, normalized block orthogonal matching pursuit (BOMP) algorithm is introduced, and based on its approximate performance analysis, we develop interference cancellation-based BOMP (ICBOMP) algorithm. The ICBOMP performs error correction and detection in each iteration of the normalized BOMP. Simulation results demonstrate the effectiveness of the proposed scheme in small packet services, as well as the advantages of ICBOMP in improving signal recovery accuracy and reducing computational cost.This is a manuscript of an article published as Xie, Ronggui, Huarui Yin, Xiaohui Chen, and Zhengdao Wang. "Many access for small packets based on precoding and sparsity-aware recovery." IEEE Transactions on Communications 64, no. 11 (2016): 4680-4694. doi: 10.1109/TCOMM.2016.2605094. Posted with permission.</p