22,034 research outputs found
Learning the LMP-Load Coupling From Data: A Support Vector Machine Based Approach
This paper investigates the fundamental coupling between loads and locational
marginal prices (LMPs) in security-constrained economic dispatch (SCED).
Theoretical analysis based on multi-parametric programming theory points out
the unique one-to-one mapping between load and LMP vectors. Such one-to-one
mapping is depicted by the concept of system pattern region (SPR) and
identifying SPRs is the key to understanding the LMP-load coupling. Built upon
the characteristics of SPRs, the SPR identification problem is modeled as a
classification problem from a market participant's viewpoint, and a Support
Vector Machine based data-driven approach is proposed. It is shown that even
without the knowledge of system topology and parameters, the SPRs can be
estimated by learning from historical load and price data. Visualization and
illustration of the proposed data-driven approach are performed on a 3-bus
system as well as the IEEE 118-bus system
Rigidity of fiber-preserving quasisymmetric maps
We show that fiber-preserving quasisymmetric maps are biLipschitz. As an
application, we show that quasisymmetric maps on Carnot groups with reducible
first stratum are biLipschitz
False Analog Data Injection Attack Towards Topology Errors: Formulation and Feasibility Analysis
In this paper, we propose a class of false analog data injection attack that
can misguide the system as if topology errors had occurred. By utilizing the
measurement redundancy with respect to the state variables, the adversary who
knows the system configuration is shown to be capable of computing the
corresponding measurement value with the intentionally misguided topology. The
attack is designed such that the state as well as residue distribution after
state estimation will converge to those in the system with a topology error. It
is shown that the attack can be launched even if the attacker is constrained to
some specific meters. The attack is detrimental to the system since
manipulation of analog data will lead to a forged digital topology status, and
the state after the error is identified and modified will be significantly
biased with the intended wrong topology. The feasibility of the proposed attack
is demonstrated with an IEEE 14-bus system.Comment: 5 pages, 7 figures, Proc. of 2018 IEEE Power and Energy Society
General Meetin
Kernel Cross-Correlator
Cross-correlator plays a significant role in many visual perception tasks,
such as object detection and tracking. Beyond the linear cross-correlator, this
paper proposes a kernel cross-correlator (KCC) that breaks traditional
limitations. First, by introducing the kernel trick, the KCC extends the linear
cross-correlation to non-linear space, which is more robust to signal noises
and distortions. Second, the connection to the existing works shows that KCC
provides a unified solution for correlation filters. Third, KCC is applicable
to any kernel function and is not limited to circulant structure on training
data, thus it is able to predict affine transformations with customized
properties. Last, by leveraging the fast Fourier transform (FFT), KCC
eliminates direct calculation of kernel vectors, thus achieves better
performance yet still with a reasonable computational cost. Comprehensive
experiments on visual tracking and human activity recognition using wearable
devices demonstrate its robustness, flexibility, and efficiency. The source
codes of both experiments are released at https://github.com/wang-chen/KCCComment: The Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18
Nonparametric Estimation of Multi-View Latent Variable Models
Spectral methods have greatly advanced the estimation of latent variable
models, generating a sequence of novel and efficient algorithms with strong
theoretical guarantees. However, current spectral algorithms are largely
restricted to mixtures of discrete or Gaussian distributions. In this paper, we
propose a kernel method for learning multi-view latent variable models,
allowing each mixture component to be nonparametric. The key idea of the method
is to embed the joint distribution of a multi-view latent variable into a
reproducing kernel Hilbert space, and then the latent parameters are recovered
using a robust tensor power method. We establish that the sample complexity for
the proposed method is quadratic in the number of latent components and is a
low order polynomial in the other relevant parameters. Thus, our non-parametric
tensor approach to learning latent variable models enjoys good sample and
computational efficiencies. Moreover, the non-parametric tensor power method
compares favorably to EM algorithm and other existing spectral algorithms in
our experiments
- …