70,951 research outputs found

    The effect of temperature evolution on the interior structure of H2{}_{2}O-rich planets

    Full text link
    For most planets in the range of radii from 1 to 4 R_{\oplus}, water is a major component of the interior composition. At high pressure H2{}_{2}O can be solid, but for larger planets, like Neptune, the temperature can be too high for this. Mass and age play a role in determining the transition between solid and fluid (and mixed) water-rich super-Earth. We use the latest high-pressure and ultra-high-pressure phase diagrams of H2{}_{2}O, and by comparing them with the interior adiabats of various planet models, the temperature evolution of the planet interior is shown, especially for the state of H2{}_{2}O. It turns out that the bulk of H2{}_{2}O in a planet's interior may exist in various states such as plasma, superionic, ionic, Ice VII, Ice X, etc., depending on the size, age and cooling rate of the planet. Different regions of the mass-radius phase space are also identified to correspond to different planet structures. In general, super-Earth-size planets (isolated or without significant parent star irradiation effects) older than about 3 Gyr would be mostly solid.Comment: Accepted by ApJ, in print for March 2014 (14 pages, 3 colored figures, 1 table