6 research outputs found

    Atomic-Precision Fabrication of Quasi-Full-Space Grain Boundaries in Two-Dimensional Hexagonal Boron Nitride

    No full text
    Precise control and in-depth understanding of the interfaces are crucial for the functionality-oriented material design with desired properties. Herein, via modifying the long-standing bicrystal strategy, we proposed a novel nanowelding approach to build up interfaces between two-dimensional (2D) materials with atomic precision. This method enabled us, for the first time, to experimentally achieve the quasi-full-parameter-space grain boundaries (GBs) in 2D hexagonal boron nitride (h-BN). It further helps us unravel the long-term controversy and confusion on the registry of GBs in h-BN, including (i) discriminate the relative contribution of the strain and chemical energy on the registry of GBs; (ii) identify a new dislocation core-Frank partial dislocation and four new antiphase boundaries; and (iii) confirm the universal GB faceting. Our work provides a new paradigm to the exploitation of structural-property correlation of interfaces in 2D materials

    Atomic-Precision Fabrication of Quasi-Full-Space Grain Boundaries in Two-Dimensional Hexagonal Boron Nitride

    No full text
    Precise control and in-depth understanding of the interfaces are crucial for the functionality-oriented material design with desired properties. Herein, via modifying the long-standing bicrystal strategy, we proposed a novel nanowelding approach to build up interfaces between two-dimensional (2D) materials with atomic precision. This method enabled us, for the first time, to experimentally achieve the quasi-full-parameter-space grain boundaries (GBs) in 2D hexagonal boron nitride (h-BN). It further helps us unravel the long-term controversy and confusion on the registry of GBs in h-BN, including (i) discriminate the relative contribution of the strain and chemical energy on the registry of GBs; (ii) identify a new dislocation core-Frank partial dislocation and four new antiphase boundaries; and (iii) confirm the universal GB faceting. Our work provides a new paradigm to the exploitation of structural-property correlation of interfaces in 2D materials

    Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid

    No full text
    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and Ga<sub><i>x</i></sub>In<sub>1–<i>x</i></sub>Se were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides

    Multifarious Interfaces, Band Alignments, and Formation Asymmetry of WSe<sub>2</sub>–MoSe<sub>2</sub> Heterojunction Grown by Molecular-Beam Epitaxy

    No full text
    Monolayer (ML) transition-metal dichalcogenides (TMDs) continue to attract research attention, and the heterojunctions formed by vertically stacking or laterally stitching two different TMDs, e.g., MoSe2 and WSe2, may have many interesting electronic and optical properties and thus are at the center stage of current research. Experimentally realizing such heterojunctions with desired interface morphologies and electronic properties is of great demand. In this work, we report a diverse interface structure in molecular-beam epitaxial WSe2–MoSe2 heterojunction. The corresponding electronic bands show type-II band alignment for both monolayer ML−ML and ML–bilayer lateral junctions irrespective of the presence or absence of step states. Interestingly, a strong anisotropy in lateral heterojunction formation is observed, where sharp interfaces are obtained only when WSe2 deposition precedes MoSe2. Reversing the deposition order leads to alloying of the two materials without a notable boundary. This is explained by a step segregation process as suggested by the first-principles total energy calculations

    Lateral and Vertical MoSe<sub>2</sub>–MoS<sub>2</sub> Heterostructures via Epitaxial Growth: Triggered by High-Temperature Annealing and Precursor Concentration

    No full text
    Atomically thin transition-metal dichalcogenide (TMDC) heterostructures have attracted increasing attention because of their unprecedented potential in the fields of electronics and optoelectronics. However, selective growth of either lateral or vertical TMDC heterostructures remains challenging. Here, we report that lateral and vertical MoS2/MoSe2 epitaxial heterostructures can be successfully fabricated via a one-step growth strategy, which includes triggering by the concentration of sulfur precursor vapor and a high-temperature annealing process. Vertically stacked MoS2/MoSe2 heterostructures can be synthesized via control of the nucleation and growth kinetics, which is induced by high sulfur vapor concentration. The high-temperature annealing process results in the formation of fractured MoSe2 and in situ epitaxial growth of lateral MoSe2–MoS2 heterostructures. This study has revealed the importance of sulfur vapor concentration and high-temperature annealing processes in the controllable growth of MoSe2–MoS2 heterostructures, paving a new route for fabricating two-dimensional TMDC heterostructures
    corecore