5 research outputs found

    Capillary Force-Driven, Large-Area Alignment of Multi-segmented Nanowires

    No full text
    We report the large-area alignment of multi-segmented nanowires in nanoscale trenches facilitated by capillary forces. Electrochemically synthesized nanowires between 120 and 250 nm in length are aligned and then etched selectively to remove one segment, resulting in arrays of nanowires with precisely controlled gaps varying between 2 and 30 nm. Crucial to this alignment process is the dispersibility of the nanowires in solution which is achieved by chemically modifying them with hexadecyl­tri­methyl­ammonium bromide. We found that, even without the formation of an ordered crystalline phase at the droplet edges, the nanowires can be aligned in high yield. To illustrate the versatility of this approach as a nanofabrication technique, the aligned nanowires were used for the fabrication of arrays of gapped graphene nanoribbons and SERS substrates

    Locally Altering the Electronic Properties of Graphene by Nanoscopically Doping It with Rhodamine 6G

    No full text
    We show that Rhodamine 6G (R6G), patterned by dip-pen nanolithography on graphene, can be used to locally n-dope it in a controlled fashion. In addition, we study the transport and assembly properties of R6G on graphene and show that in general the π–π stacking between the aromatic components of R6G and the underlying graphene drives the assembly of these molecules onto the underlying substrate. However, two distinct transport and assembly behaviors, dependent upon the presence or absence of R6G dimers, have been identified. In particular, at high concentrations of R6G on the tip, dimers are transferred to the substrate and form contiguous and stable lines, while at low concentrations, the R6G is transferred as monomers and forms patchy, unstable, and relatively ill-defined features. Finally, Kelvin probe force microscopy experiments show that the local electrostatic potential of the graphene changes as function of modification with R6G; this behavior is consistent with local molecular doping, highlighting a path for controlling the electronic properties of graphene with nanoscale resolution

    Shape-Selective Deposition and Assembly of Anisotropic Nanoparticles

    No full text
    We report the large-area assembly of anisotropic gold nanoparticles into lithographically defined templates with control over their angular position using a capillary force-based approach. We elucidate the role of the geometry of the templates in the assembly of anisotropic nanoparticles consisting of different shapes and sizes. These insights allow us to design templates that immobilize individual triangular nanoprisms and concave nanocubes in a shape-selective manner and filter undesired impurity particles from a mixture of triangular prisms and other polyhedra. Furthermore, by studying the assembly of two particles in the same template, we elucidate the importance of interparticle forces in this method. These advances allow for the construction of face-to-face and edge-to-edge nanocube dimers as well as triangular nanoprism bowtie antennas. As an example of the fundamental studies enabled by this assembly method, we investigate the surface-enhanced Raman scattering (SERS) of face-to-face concave cube dimers both experimentally and computationally and reveal a strong polarization dependence of the local field enhancement

    OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps

    No full text
    We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps

    Surface Modification of Smooth Poly(l-lactic acid) Films for Gelatin Immobilization

    No full text
    Poly­(l-lactic acid) (PLLA) is widely used in drug delivery and medical implants. Surface modification of PLLA with functional groups to immobilize gelatin or other extracellular matrix proteins is commonly used to improve its cellular affinity. In this work, we use the oxygen plasma to treat PLLA film followed by modification with organosilanes with different functional groups, such as amine, epoxy, and aldehyde groups. Gelatin is then immobilized on the modified PLLA film, which is confirmed by water contact angle measurement, atomic force microscopy (AFM), and laser scanning confocal microscopy (LSCM). Among the used organosilanes, aminosilane is the best one for modification of PLLA used for immobilization of gelatin with the highest efficiency. Moreover, the cellular affinity of gelatin-immobilized PLLA is studied through the evaluation of cell proliferation and focal adhesion using the human umbilical vein endothelial cells (HUVECs). Our experimental results show that the gelatin immobilized on aminosilane- and aldehyde-silane-modified PLLA improves the cellular affinity of HUVECs, whereas that immobilized on epoxy-silane-modified PLLA does not show significant improvement on the cell proliferation
    corecore