72 research outputs found
Construction and characterization of whole-cell catalytic system for oxidation of avermectin.
<p>(A) Construction of <i>cyp107z13</i> gene expression vector pRET-z13, co-expression vector pDuet-<i>fd</i>-<i>fdr</i>18 and pDuet-<i>fd</i>-<i>fdr</i>28. <i>E. coli-zfr</i>18 was <i>E. coli</i> BL21 (DE3) containing pRSET-z13 and pDuet-<i>fd</i>-<i>fdr</i>18, <i>E. coli-zfr</i>28 was <i>E. coli</i> BL21 (DE3) containing pRSET-z13 and pDuet-<i>fd</i>-<i>fdr</i>28. (B) PCR analysis of <i>cyp107z13</i>, <i>fd</i>68, <i>fdr</i>18 and/or <i>fdr</i> 28 genes in <i>E. coli-zfr</i>18 and <i>E. coli-zfr</i>28. <i>cyp107z13</i> with primers: z13F+z13R, <i>fd</i>68 with primers: RfdF+RfdR, 1,3 and 5: <i>E. coli-zfr</i>18; 2,4 and 6: <i>E. coli-zfr</i>28. <i>fdr</i>18 with primers: Rzre1F+Rzre1R, <i>fdr</i>28 with primers: Rzre1F+Rzre2R. PCR products of <i>cyp107z13</i>, <i>fd</i>68, <i>fdr</i>18 and <i>fdr</i>28 are 1920 bp, 195 bp, 1263 bp and 1344 bp respectively. (C) SDS-PAGE analysis of recombinant proteins expressed by <i>E. coli-zfr</i>18 and <i>E. coli-zfr</i>28. Mr: protein markers; 1: <i>E. coli-fdr</i>18; 2: <i>E. coli-fdr</i>28; 3: <i>E. coli-zfr</i>18; 4: <i>E. coli-zfr</i>28; 5: <i>E. coli-z13</i>; 6: <i>E. coli</i> BL21 (DE3). (D) HPLC analysis of the products of avermectin catalyzed by <i>E. coli</i> BL21(DE3), wild <i>S. ahygroscopicus</i> ZB01, <i>E. coli-zfr</i>18 and <i>E. coli-zfr</i>28. The peaks of avermectin B1a and metabolites are indicated. The 1 represents the peak of avermectin B1a, 2 represents the peak of 4″-oxo-avermectin, and 3 represents the peak of avermectin B1b. The retention times for avermectin B1a is 21.6 min, for 4″-oxo-avermectin B1a is 24.8 min, and for avermectin B1b is 20.3 min.</p
Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO<sub>4</sub>‑Based Mixed Conductors
The Ca<sup>2+</sup> and Ba<sup>2+</sup> solubility on Nd<sup>3+</sup> sites in new layered perovskite NdBaInO<sub>4</sub> mixed oxide
ionic and hole conductor and their effect on the oxide ion conductivity
of NdBaInO<sub>4</sub> were investigated. Among the alkaline earth
metal cations Ca<sup>2+</sup>, Sr<sup>2+</sup>, and Ba<sup>2+</sup>, Ca<sup>2+</sup> was shown to be the optimum acceptor–dopant
for Nd<sup>3+</sup> in NdBaInO<sub>4</sub> showing the largest substitution
for Nd<sup>3+</sup> up to 20% and leading to oxide ion conductivities
∼3 × 10<sup>–4</sup>–1.3 × 10<sup>–3</sup> s/cm within 600–800 °C on Nd<sub>0.8</sub>Ca<sub>0.2</sub>BaInO<sub>3.9</sub> composition, exceeding the most-conducting Nd<sub>0.9</sub>Sr<sub>0.1</sub>BaInO<sub>3.95</sub> in the Sr-doped NdBaInO<sub>4</sub>. Energetics of defect formation and oxygen vacancy migration
in NdBaInO<sub>4</sub> were computed through the atomistic static-lattice
simulation. The solution energies of Ca<sup>2+</sup>/Sr<sup>2+</sup>/Ba<sup>2+</sup> on the Nd<sup>3+</sup> site in NdBaInO<sub>4</sub> for creating the oxygen vacancies confirm the predominance of Ca<sup>2+</sup> on the substitution for Nd<sup>3+</sup> and enhancement
of the oxygen vacancy conductivity over the larger Sr<sup>2+</sup> and Ba<sup>2+</sup>. The electronic defect formation energies indicate
that the p-type conduction in a high partial oxygen pressure range
of the NdBaInO<sub>4</sub>-based materials is from the oxidation reaction
forming the holes centered on O atoms. Both the static lattice and
molecular dynamic simulations indicate two-dimensional oxygen vacancy
migration within the perovskite slab boundaries for the acceptor-doped
NdBaInO<sub>4</sub>. Molecular dynamic simulations on the Ca-doped
NdBaInO<sub>4</sub> specify two major vacancy migration events, respectively,
via one intraslab path along the <i>b</i> axis and one interslab
path along the <i>c</i> axis. These paths are composed by
two terminal oxygen sites within the perovskite slab boundaries
Photographs of <i>Setaria</i> grains.
<p>1 = Z668, 2 = Z335, 3 = Z399, 4 = Z557, 5 = Z280, 6 = Z169, 7 = Z737, 8 = Z734, 9 = W28, 10 = Qing24, 11 = Qing68, 12 = Qing44, 13 = Qing46, 14 = Qing28, 15 = Qing7-1, 16 = Qing59.</p
Characterization of <i>fd</i>68 gene disruption mutants of <i>S.ahygroscopicus</i> ZB01.
<p>(A) Map of the fd68 knock-out plasmids pKC1139:: <i>fd</i>68. The 172bp <i>fd</i>68 fragment named Δfd68 was subcloned into the <i>EcoR</i> I and <i>Hind</i> III sitesa of lacZα MCS in plasmid pKC1139. (B) Phenotype of wild <i>S. ahygroscopicus</i> ZB01 and <i>fd</i>68 disruption mutants ZBΔ<i>fd</i>68-3 and ZBΔ<i>fd</i>68-6 (7 d on YMS medium at 30°C). Note the color changes of the colonies of the strains. (C) PCR analysis of apramycin resistance gene and <i>fd</i>68 with primers AF1/AR1 for apramycin resistance gene and fF1/fR1 for <i>fd</i>68; Mr, DNA Marker. The line above the lane numbers indicates DNA from wild-type strain <i>S. ahygroscopicus</i> ZB01, mutant ZBΔ<i>fd</i>68-3 and ZBΔ<i>fd</i>68-6. (D) Mycelium dry weights of <i>fd</i>68 disruption mutants ZBΔ<i>fd</i>68-3, and ZBΔ<i>fd</i>68-6 and wild-type <i>S. ahygroscopicu</i> ZB01 at different incubation times in YEME. 10<sup>8</sup> spores of strains were inoculated in 250 ml flasks with 80 ml liquid YEME medium and cultured for 8 d, the mycelium were collected and dried at 70°C for 1 d. Error bars represent the standard deviation of three replicas in three independent experiments. (E) HPLC analysis of the products of avermectin catalyzed by avermectin standard, wild <i>S. ahygroscopicus</i> ZB01, ZB△<i>fd</i>68-3 and ZB△<i>fd</i>68-6. The peaks of avermectin B1a and metabolites are indicated. The 1 represents the peak of avermectin B1a, 2 represents the peak of 4″-oxo-avermectin, and 3 represents the peak of avermectin B1b. The retention times for avermectin B1a is 22.5 min, for 4″-oxo-avermectin B1a is 24.7 min, and for avermectin B1b is 20.7 min.</p
Structures of the avermectin and product 4″-O-avermectin.
<p>Structures of the avermectin and product 4″-O-avermectin.</p
Bivariate biplot of W1-3 and W2-3 values of measurements from epidermal long cells of foxtail millet and green foxtail.
<p>W1-3 = width of undulated patterns of epidermal long cells of ΩIII; W2-3 = width of epidermal long cells of ΩIII. Error bar = SD.</p
Comparison of W1-3, W2-3, and H-3 of undulating patterns of epidermal long cell from all <i>S. italica</i> and <i>S. viridis</i> based on Box Plot.
<p>9 species for <i>S. italica</i> (872 data) and 7 species for <i>S. viridis</i> (607 data).</p
Information on the plants studied.
<p>Information on the plants studied.</p
Comparison of undulated patterns of silicified epidermal long cells in different parts of the upper lemmas and paleas from foxtail millet and green foxtail.
<p>Comparison of undulated patterns of silicified epidermal long cells in different parts of the upper lemmas and paleas from foxtail millet and green foxtail.</p
Primers used for PCR in this study.
<p>Primers used for PCR in this study.</p
- …