177 research outputs found

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    The Partitioning of PAHs to Egg Phospholipids Facilitated by Copper and Proton Binding via Cation-π Interactions

    No full text
    The partitioning to lipid-containing solids (cell membranes, natural organic matters) plays an important role in the fate of organic pollutants. We herein studied sorption of a series of aromatic compounds from aqueous solution to gel-phase egg phospholipids. The regression line describing the free-energy relationship between lipid−water distribution coefficient (Kd) and n-octanol–water partition coefficient (KOW) for the high-polar compounds (phenolics, dinitrobenzene, trinitrobenzene) is displaced upward relative to the low-polar compounds (chlorobenzenes, polycyclic aromatic hydrocarbons (PAHs), nitrobenzene, dichlorobenzonitrile), suggesting additive polar extra-interactions besides hydrophobic effects in sorption. Binding of Cu2+ or decreasing pH increases sorption of the three and four-ring PAHs but not the rest compounds. These results led us to propose a specific sorption mechanism, cation-π bonding between PAHs and complexed metal ions or protonated amine groups of phospholipids. The Cu2+-PAH complexation in solution was supported by the observation that PAHs enhance the saturated solubility of CuSO4 in chloroform, and the enhancement correlates with π-donor strength of PAH (pyrene > phenanthrene > naphthalene). The electron coupling between the protonated amine groups of phospholipids and PAHs in chloroform was verified by the electronic deshielding-induced downfield chemical shifts of phenanthrene at low pH in the 1H NMR spectrum

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    Developing a Targeted Quantitative Strategy for Sulfoxide-Containing MS-Cleavable Cross-Linked Peptides to Probe Conformational Dynamics of Protein Complexes

    No full text
    In recent years, cross-linking mass spectrometry (XL-MS) has made enormous strides as a technology for probing protein–protein interactions (PPIs) and elucidating architectures of multisubunit assemblies. To define conformational and interaction dynamics of protein complexes under different physiological conditions, various quantitative cross-linking mass spectrometry (QXL-MS) strategies based on stable isotope labeling have been developed. These QXL-MS approaches have effectively allowed comparative analysis of cross-links to determine their relative abundance changes at global scales. Although successful, it remains challenging to consistently obtain quantitative measurements on low-abundant cross-links. Therefore, targeted QXL-MS is needed to enable MS “Western” analysis of cross-links to enhance sensitivity and reliability in quantitation. To this end, we have established a robust parallel reaction monitoring (PRM)-based targeted QXL-MS platform using sulfoxide-containing MS-cleavable cross-linker disuccinimidyl sulfoxide (DSSO), permitting label-free comparative analysis of selected cross-links across multiple samples. In addition, we have applied this methodology to study phosphorylation-dependent conformational dynamics of the human 26S proteasome. The PRM-based targeted QXL-MS analytical platform described here is applicable for all sulfoxide-containing MS-cleavable cross-linkers and can be directly adopted for comparative studies of protein–protein interactions in various cellular contexts

    Quantitative Analysis of global Ubiquitination in HeLa Cells by Mass Spectrometry

    No full text
    Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system

    Protein network analysis of MDM2 substrates by Ingenuity Pathway Analysis software (IPA).

    No full text
    <p>The genes shaded reds are substrates selected in our strategy. Solid lines represent direct interactions, dotted lines represent indirect interactions. Arrows from one node to another indicate that this node acts upon the other. Lines without arrows represent binding. Node shapes are: vertical diamond means enzyme; dotted rectangle means ion channel; inverted triangle means kinase; horizontal diamond means peptidase; triangle means phosphatase; horizontal oval means transcription regulator; double-circle means complex/group; trapezium means microRNA; semicircle means mature microRNA; circle means other;.</p

    Quantitative Analysis of global Ubiquitination in HeLa Cells by Mass Spectrometry

    No full text
    Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system
    • 

    corecore