13 research outputs found

    Prognostic significance of microRNA-101 in solid tumor: A meta-analysis

    No full text
    <div><p>MicroRNA-101 has been reported as an important factor in carcinogenesis of several malignant tumors. However, its actual role in prognosis among solid malignancies remains unclear. Accordingly, we performed this meta-analysis aiming to identify prognostic significance of miR-101 in solid tumor. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) or disease-free survival (DFS)/metastasis-free survival (MFS)/progression-free survival (PFS)/relapse-free survival (RFS)/time-to progression (TTP) were estimated with random effects or fixed effects models on the basis of heterogeneity. Subgroup analysis, sensitive analysis and meta-regression analysis were also conducted to clarify the possible confounding factors and investigate the source of heterogeneity. Publication bias was evaluated by using Begg’s and Egger’s tests. A total of 21 studies containing 3753 cases were selected into our quantitative analysis via electronic database search. A lower expression of miR-101 was significantly associated with worse OS (HR = 0.66, 95%CI [0.52–0.85], P = 0.001) and PFS (HR = 0.70, 95%CI [0.51–0.95], P = 0.023) in patients with solid tumor. The under-expression of miRNA-101 is a credible indicator of poorer prognosis in several of solid malignancies.</p></div

    Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs

    No full text
    The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs’ side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin’s application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of <u>f</u>ol<u>a</u>te-conjugated <u>s</u>erici<u>n</u> nanoparticles with cancer-targeting capability for pH-responsive release of <u>d</u>oxorubicin (these nanoparticles are termed “FA-SND”). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo-cytotoxicity. Together, this study suggests that these FA-SND nanoparticles may be a potentially effective carrier particularly useful for delivering hydrophobic chemotherapeutic agents for treating cancers with high-level expression of folate receptors
    corecore