5 research outputs found
Table_1_The genome and transcriptome of Sarocladium terricola provide insight into ergosterol biosynthesis.docx
Sarocladium terricola is a species of ascomycete fungus that has been recognized as a biocontrol agent for managing animal and plant pathogens, and exhibits significant potential as a feed additive. In this study, we utilized a combination of short-read Illumina sequencing and long-read PacBio sequencing to sequence, assemble, and analyze the genome of S. terricola. The resulting genome consisted of 11 scaffolds encompassing 30.27 Mb, with a GC content of 54.07%, and 10,326 predicted protein coding gene models. We utilized 268 single-copy ortholog genes to reconstruct the phylogenomic relationships among 26 ascomycetes, and found that S. terricola was closely related to two Acremonium species. We also determined that the ergosterol content of S. terricola was synthesized to nearly double levels when cultured in potato dextrose media compared to bean media (4509 mg/kg vs. 2382 mg/kg). Furthermore, transcriptome analyses of differentially expressed genes suggested that the ergosterol synthesis genes ERG3, ERG5, and ERG25 were significantly up-regulated in potato dextrose media. These results will help us to recognize metabolic pathway of ergosterol biosynthesis of S. terricloa comprehensivelly.</p
Table_2_The genome and transcriptome of Sarocladium terricola provide insight into ergosterol biosynthesis.docx
Sarocladium terricola is a species of ascomycete fungus that has been recognized as a biocontrol agent for managing animal and plant pathogens, and exhibits significant potential as a feed additive. In this study, we utilized a combination of short-read Illumina sequencing and long-read PacBio sequencing to sequence, assemble, and analyze the genome of S. terricola. The resulting genome consisted of 11 scaffolds encompassing 30.27 Mb, with a GC content of 54.07%, and 10,326 predicted protein coding gene models. We utilized 268 single-copy ortholog genes to reconstruct the phylogenomic relationships among 26 ascomycetes, and found that S. terricola was closely related to two Acremonium species. We also determined that the ergosterol content of S. terricola was synthesized to nearly double levels when cultured in potato dextrose media compared to bean media (4509 mg/kg vs. 2382 mg/kg). Furthermore, transcriptome analyses of differentially expressed genes suggested that the ergosterol synthesis genes ERG3, ERG5, and ERG25 were significantly up-regulated in potato dextrose media. These results will help us to recognize metabolic pathway of ergosterol biosynthesis of S. terricloa comprehensivelly.</p
Image_1_The genome and transcriptome of Sarocladium terricola provide insight into ergosterol biosynthesis.jpeg
Sarocladium terricola is a species of ascomycete fungus that has been recognized as a biocontrol agent for managing animal and plant pathogens, and exhibits significant potential as a feed additive. In this study, we utilized a combination of short-read Illumina sequencing and long-read PacBio sequencing to sequence, assemble, and analyze the genome of S. terricola. The resulting genome consisted of 11 scaffolds encompassing 30.27 Mb, with a GC content of 54.07%, and 10,326 predicted protein coding gene models. We utilized 268 single-copy ortholog genes to reconstruct the phylogenomic relationships among 26 ascomycetes, and found that S. terricola was closely related to two Acremonium species. We also determined that the ergosterol content of S. terricola was synthesized to nearly double levels when cultured in potato dextrose media compared to bean media (4509 mg/kg vs. 2382 mg/kg). Furthermore, transcriptome analyses of differentially expressed genes suggested that the ergosterol synthesis genes ERG3, ERG5, and ERG25 were significantly up-regulated in potato dextrose media. These results will help us to recognize metabolic pathway of ergosterol biosynthesis of S. terricloa comprehensivelly.</p
Data_Sheet_1_Detecting and characterizing new endofungal bacteria in new hosts: Pandoraea sputorum and Mycetohabitans endofungorum in Rhizopus arrhizus.ZIP
The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.</p
Fucoxanthin Alleviates Dextran Sulfate Sodium-Induced Colitis and Gut Microbiota Dysbiosis in Mice
The purpose of this study was to evaluate the preventive
role and
underlying mechanisms of fucoxanthin (Fx) on dextran sulfate sodium
(DSS)-induced colitis in mice. The present data demonstrated that
oral administration of Fx (50 and 200 mg/kg body weight/day) for 36
days significantly alleviated the severity of colitis in DSS-treated
mice, as evidenced by attenuating body weight loss, bloody stool,
diarrhea, shortened colon length, colonic epithelium distortion, a
thin mucus layer, goblet cell depletion, damaged crypts, and extensive
infiltration of inflammatory cells in the colonic mucosa. Additionally,
Fx notably relieved DSS-induced intestinal epithelial barrier dysfunction
via maintaining the tight junction function and preventing excessive
apoptosis of colonic epithelial cells. Moreover, Fx effectively diminished
colonic inflammation and oxidative stress in DSS-treated mice, and
its mechanisms might be due to blunting the activation of NF-κB
and NLRP3 inflammasome signaling pathways. Furthermore, Fx also modulates
DSS-induced gut microbiota dysbiosis via recovering the richness and
diversity of gut microbiota and reshaping the structure of gut microbiota,
such as increasing the Firmicutes and Bacteroidota (F/B) ratio and elevating the relative
abundance of some potential beneficial bacteria, including Lactobacillaceae and Lachnospiraceae. Overall, Fx might be developed as a promising functional ingredient
to prevent colitis and maintain intestinal homeostasis
