25 research outputs found

    聽覺障礙學生「社會—情緒」評量表之修定研究

    Full text link
    [[abstract]]本研究依據美國學者k.P.Meadow等人於一九八三年編訂之聽覺障礙學生「社會一結緒 」評量表加以修訂,使之適用於我國。修訂評量表內容包括:「社會適應」、「自我 形象」及「情緒適應」三分量表。 修訂量表樣本以分層隨機選取台灣地區敨聰學校、班之高中、國中、國小學生共九九 六名,為建立常模的標準化樣本。樣本之評量悉由與學生有密切接觸或在學校的各種 情況中,有機會反覆觀察學生的教師施測。 針對「年齡」、「教育安置」及「性別」變項修訂評量表建立三個分量表之百分位數 常模。量表信度包括評量者間、重測及內部一致性三項信度(.85至.38)。效 度則佁以操行成績與適應行為量表為效標之同時效度。量表因素分析則顯示與原量表 因素有所出入。 修訂評量表可供聽覺障礙學生「社會一情緒」之發展與適應的鑑定,以為發展個別化 教學計劃及輔導方案之依據。

    Bond Wire Damage Detection Method on Discrete MOSFETs Based on Two-Port Network Measurement

    Full text link
    Bond wire damage is one of the most common failure modes of metal-oxide semiconductor field-effect transistor (MOSFET) power devices in wire-welded packaging. This paper proposes a novel bond wire damage detection approach based on two-port network measurement by identifying the MOSFET source parasitic inductance (LS). Numerical calculation shows that the number of bond wire liftoffs will change the LS, which can be used as an effective bond wire damage precursor. Considering a power MOSFET as a two-port network, LS is accurately extracted from frequency domain impedance (Z−parameter) using a vector network analyzer under zero biasing conditions. Bond wire cutoff experiments are employed to validate the proposed approach for bond wire damage detection. The result shows that LS increases with the rising severity of bond wire faults, and even the slight fault shows a high sensitivity, which can be effectively used to quantify the number of bond wire liftoffs of discrete MOSFETs. Meanwhile, the source parasitic resistance (RS) extracted from the proposed two-port network measurement can be used for the bond wire damage detection of high switching frequency silicon carbide MOSFETs. This approach offers an effective quality screening technology for discrete MOSFETs without power on treatment.Electronic Components, Technology and Material

    A facile method to prepare oriented boron nitride-based polymer composite with enhanced thermal conductivity and mechanical properties

    Full text link
    Hexagonal boron nitride (BN) is often used as filler to improve the thermal conductivity of polymer matrix due to its high thermal conductivity. However, previously reported BN-based composites always have a high in-plane thermal conductivity, which is not beneficial for vertical heat dissipation. In addition, high BN content results in the deterioration of the mechanical properties. Here, we report a feasible method to prepare a BN/silicone rubber (SiR) composite with oriented BN in organosilicon matrix via a vacuum-assisted self-assembly technique. The BN/SiR composite displays a 1270% higher (2.74 W/(m·K)) thermal conductivity than that of neat organosilicon matrix (0.20 W/(m·K)). The oriented BN nanosheets increase the polymer's adhesive force and exhibit excellent compression cycle performance. In turn, these features support its superiority as thermal interface material in the light-emitting diode chips heat dissipation application.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Failure quantitative assessment approach to MOSFET power device by detecting parasitic parameters

    Full text link
    With the emerging wide bandgap (WBG) semiconductor development, the increasing power density and efficiency of power electronic converters may cause more switching oscillation, electromagnetic interference noise, and additional power loss, further increasing the probability of device failure. Therefore, determining and quantifying the failure of a metal-oxide-semiconductor-field-effect transistor (MOSFET), which assembled using WBG semiconductor in some applications, is crucial to improving the reliability of a power converter. This study proposes a novel failure quantitative assessment approach based on MOSFET parasitic parameters. According to the two-port network theory, MOSFET is equivalent to some second-order RLC circuits composed of independent inductances, capacitances, and resistances in series. Then, the frequency-domain impedance associated with the physical failure of MOSFET is identified through frequency domain reflectometry. Accelerated aging and bond wires cut-off experiments are employed to obtain various quality states of the MOSFET device. Result shows that the MOSFET quality level and its number of bond wire lift-offs can be quantified effectively. Drain-to-source on-resistance (RDS(on)) that normally represents the MOSFET quality shows a positive linear function relationship on drain-to-source parasitic resistance (RD + RS) during the quality degradation proceeding. This finding matches with the correlation established between RDS (on) and RD + RS in theory. Meanwhile, source parasitic inductance (LS) increases with the severity of bond wires faults, and even the slight fault shows a high sensitivity. The proposed approach would be an effective quality screening technology for power semiconductor devices without power on treatment, which can effectively avoid the impact of junction temperature and test conditions (current and voltage) on test results, and does not need to design additional test circuits. The test frequency range we used in this approach was 10–300 MHz, which to some extent is suitable for providing an on-line quality monitoring technology for high-frequency WBG power devices manufacturing.Electronic Components, Technology and Material

    Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    Full text link
    The mechanical and electronic properties of two GaN crystals, wurtzite and zinc-blende GaN, under various hydrostatic pressures were investigated using first principles calculations. The results show that the lattice constants of the two GaN crystals calculated in this study are close to previous experimental results, and the two GaN crystals are stable under hydrostatic pressures up to 40 GPa. The pressure presents extremely similar trend effect on the volumes of unit cells and average Ga-N bond lengths of the two GaN crystals. The bulk modulus increases while the shear modulus decreases with the increase in pressure, resulting in the significant increase of the ratios of bulk moduli to shear moduli for the two GaN polycrystals. Different with the monotonic changes of bulk and shear moduli, the elastic moduli of the two GaN polycrystals may increase at first and then decrease with increasing pressure. The two GaN crystals are brittle materials at zero pressure, while they may exhibit ductile behaviour under high pressures. Moreover, the increase in pressure raises the elastic anisotropy of GaN crystals, and the anisotropy factors of the two GaN single crystals are quite different. Different with the obvious directional dependences of elastic modulus, shear modulus and Poisson’s ratio of the two GaN single crystals, there is no anisotropy for bulk modulus, especially for that of zinc-blende GaN. Furthermore, the band gaps of GaN crystals increase with increasing pressure, and zinc-blende GaN has a larger pressure coefficient. To further understand the pressure effect on the band gap, the band structure and density of states (DOSs) of GaN crystals were also analysed in this study.Electronic Components, Technology and Material

    Spatial variation pattern analysis of hydrologic processes and water quality in three gorges reservoir area

    Full text link
    The Three Gorges Project (TGP) has greatly enhanced the heterogeneity of the underlying surface in the Three Gorges Reservoir Area (TGRA), thereby affecting the hydrologic processes and water quality. However, the influence of the differences of underlying surfaces on the hydrologic processes and water quality in the TGRA has not been studied thoroughly. In this research, the influence of the heterogeneity of landscape pattern and geographical characteristics on the spatial distribution difference of hydrologic processes and water quality in the different tributary basins of the TGRA was identified. The TGRA was divided into 23 tributary basins with 1840 sub-basins. The spatial differentiation of the hydrologic processes and water quality of the 23 tributary basins was examined by the Soil and Water Assessment Tool (SWAT). The observed data between 1 January 2010 and 31 December 2013 were used to calibrate and validate the model, after which the SWAT model was applied to further predict the runoffand water quality in the TGRA. There are 25 main model parameters, including CN2, CH_K2 and SOL_AWC, which were calibrated and validated with SWAT-Calibration and Uncertainty Procedures (SWAT-CUP). The landscape patterns and geomorphologic characteristics in 23 tributary basins were investigated and spatially visualized to correlate with surface runoffand nutrient losses. Due to geographical difference, the average total runoffdepth (2010-2013) in the left bank area (538.6 mm) was 1.4 times higher than that in the right bank area (384.5 mm), total nitrogen (TN) loads in the left bank area (6.23 kg/ha) were 1.9 times higher than in the right bank area (3.27 kg/ha), and total phosphorus (TP) loads in the left bank area (1.27 kg/ha) were 2.2 times higher than in the right bank area (0.58 kg/ha). The total runoffdepth decreased from the head region (553.3 mm) to the tail region (383.2 mm), while the loads of TN and TP were the highest in the middle region (5.51 kg/ha for TN, 1.15 kg/ha for TP), followed by the tail region (5.15 kg/ha for TN, 1.12 kg/ha for TP) and head region (3.92 kg/ha for TN, 0.56 kg/ha for TP). Owing to the different spatial distributions of land use, soil and geographical features in the TGRA, correlations between elevation, slope gradient, slope length and total runoffdepth, TN and TP, were not clear and no consistency was observed in each tributary basin. Therefore, the management and control schemes of the water security of the TGRA should be adapted to local conditions.Hydraulic Structures and Flood Ris

    Hybrid Plasmonics Slot THz Waveguide for Subwavelength Field Confinement and Crosstalk between Two Waveguides

    Full text link
    The slot waveguide has attracted considerable attention because of its ability to confine and guide electromagnetic energy at the subwavelength scale beyond the diffraction limit. We propose a novel terahertz slot waveguide structure to achieve a better tradeoff between propagation length and field confinement capacity, the novel waveguide consisting of a two slot structure. The performances of terahertz waveguides were investigated using the finite-element method. The results demonstrated that the hybrid slot waveguide (HSW) provides significantly enhanced field confinement in low index slot regions: more than five times that of traditional low index slot waveguides (LISWs). An optimized HSW structure was achieved by tuning the tradeoff between mode confinement and propagation length. We also showed that its integration in conventional planar waveguide circuits was greatly improved compared with the LISWs, by comparing their crosstalk. The proposed new HSW structure has great potential to enable THz production of compact integration and could lead to true semiconductor-basedTHz applications with high performance.Electronic Components, Technology and Material

    A CMOS-Compatible Hybrid Plasmonic Slot Waveguide With Enhanced Field Confinement

    Full text link
    The emerging field of nanophotonics requires plasmonic devices to be fully compatible with semiconductor fabrication techniques. However, very few feasible practical structures exist at present. Here, we propose a CMOS-compatible hybrid plasmonic slot waveguide (HPSW) with enhanced field confinement. Our simulation results show that the HPSW exhibits significantly enhanced field confinement as compared with the traditional low-index slot waveguides and the hybrid metal dielectric slot waveguides. By controlling the thicknesses of different layers, an optimized HPSW structure with a better tradeoff between field confinement and propagation length has been simultaneously achieved.Electronic Components, Technology and Material

    FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity

    Full text link
    Background: FBXO32 is an E3 ubiquitin ligase that plays important roles in tumorigenesis and muscle atrophy. Results: c-Myc was found to be a target of FBXO32 for proteasomal degradation. Conclusion: FBXO32 targets Lys-326 of c-Myc to form polyubiquitin chains, resulting in inhibition of cell proliferation. Significance: FBXO32 may mediate c-Myc proteasomal degradation

    The Von Hippel-Lindau Protein Suppresses Androgen Receptor Activity

    Full text link
    The androgen receptor (AR) plays a pivotal role in prostate homeostasis and prostate cancer development. To understand the mechanism underlying the regulation of the AR holds a promise for developing novel therapeutic approaches for prostate cancer. Here, we show that the Von Hippel-Lindau gene product, pVHL, physically interacts with AR and inhibits AR transcription activity but does not induce AR turnover. Moreover, pVHL also suppresses androgen-induced cell proliferation, implicating a physiological role of pVHL in androgen-induced signaling pathway. In addition, we provide evidence to show that pVHL actually enhanced AR de-ubiquitination instead of inducing AR ubiquitination, uncovering a noncanonical role of pVHL in the ubiquitin proteasome pathway. Our data reveal a novel function of pVHL in the regulation of AR transcription activity, which may expand the scope of pVHL in tumor suppression and provide mechanistic insight into prostate cancer initiation and progression.The androgen receptor (AR) plays a pivotal role in prostate homeostasis and prostate cancer development. To understand the mechanism underlying the regulation of the AR holds a promise for developing novel therapeutic approaches for prostate cancer. Here, we show that the Von Hippel-Lindau gene product, pVHL, physically interacts with AR and inhibits AR transcription activity but does not induce AR turnover. Moreover, pVHL also suppresses androgen-induced cell proliferation, implicating a physiological role of pVHL in androgen-induced signaling pathway. In addition, we provide evidence to show that pVHL actually enhanced AR de-ubiquitination instead of inducing AR ubiquitination, uncovering a noncanonical role of pVHL in the ubiquitin proteasome pathway. Our data reveal a novel function of pVHL in the regulation of AR transcription activity, which may expand the scope of pVHL in tumor suppression and provide mechanistic insight into prostate cancer initiation and progression
    corecore