2 research outputs found

    Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α‑Amylase, α‑Glucosidase, and Intestinal Glucose Uptake

    No full text
    Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin–starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC<sub>50</sub> values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose

    Structure-Dependent Membrane-Perturbing Potency of Four Proanthocyanidin Dimers on 3T3-L1 Preadipocytes

    No full text
    Proanthocyanidins (PAs) have been widely recognized for their broad spectrum of beneficial health effects, which are highly structure-dependent. It was found that PA dimers epicatechin-3-gallate-(4β→8,2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→,2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) inhibit the differentiation of 3T3-L1 cells significantly, whereas epicatechin-(4β→8,2β→O→7)-epicatechin (A-type EC dimer) and epicatechin-(4β→8)-epicatechin (B-type EC dimer) showed little effect in previous work. However, the underlying mechanisms are unclear. To test whether bilayer perturbation may underlie this diversity of actions, we examined the bilayer-modifying effects of the four dimers in both 3T3-L1 cell and 1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphocholine liposome models by using scanning electron microscopy, fluorescent spectroscopy, differential scanning calorimetry, and molecular dynamics methods. Our results revealed that A-type ECG and EGCG dimers had a high affinity for the lipid bilayer and could form simultaneous hydrogen bonds (H-bond) with both the surface oxygen acceptors and the deeper inside lipid oxygen atoms. However, A-type and B-type EC dimers contacted only the surface oxygen atoms with limited and significantly fewer H-bonds. A-type ECG and EGCG dimers notably distorted the membrane morphology of 3T3-L1 cells. In the present study, we found there was a high positive correlation between the membrane-disturbing abilities of the four dimers and their 3T3-L1 cell differentiation inhibitory effects as previously reported. This indicated that the strong 3T3-L1 cell differentiation inhibitory effect of A-type ECG and EGCG dimers might be due to their strong bilayer-perturbing potency
    corecore