59 research outputs found

    Design of laser uniform illumination system based on aspheric lens and compound ellipsoidal cavity

    No full text
    In order to achieve uniform laser illumination with small aperture diameter and large field Angle,study laser active illumination system.An aspheric mirror combined with a composite ellipsoidal cavity is designed to achieve uniform illumination in this paper.Through an aspheric mirror,the fundamental mode of Gaussian beam is shaped into double Gaussian radiation and Flat-top radiation.The double Gaussian radiation rays are reflected again by the complex ellipsoidal cavity and decomposed into equal radiation flux,which is superimposed with the through Flat-top radiation rays to form a uniform distribution.The parameters of the complex ellipsoidal cavity are obtained by mapping equalization algorithm.After the superposition of the aspherical transmission Flat-top shaping and the composite ellipsoidal cavity secondary reflection shaping,the aperture is 29.7mm,whose aperture angle is 84.0 degrees,and the uniformity is 92.7% with 2m distance and 3.6m diameter.The optimization of uniformity is influenced by three factors:RMS,transmission and reflection power density ratio MT/R and transmission and reflection overlap degree.RMS and MT/R determine the design effect of the composite ellipsoidal cavity, which depends on the maximum reflection Angle and transmission Angle.MT/R is negatively correlated with the maximum reflection of Angle,and RMS is positively correlated with the transmission Angle.When the maximum reflection Angle is set to 32.0 degrees and the transmission Angle to 8.0 degrees,the minimum root-mean-square focusing radius is 108.6um,and the minimum effective transmission reflection power density ratio is 1.07.The degree overlap of transmission and reflection directly affects the uniformity of the target plane.The degree of transmission and reflection is adjusted by setting an adjustment factor.When the adjustment factor is 0.9,the uniformity of the target plane reaches the maximum

    DataSheet_1_Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana.docx

    No full text
    Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.</p

    ZnS/SnS<sub>2</sub> Heterostructures Encapsulated in N‑Doped Carbon Nanofibers for High-Performance Alkali Metal-Ion Batteries

    No full text
    Heterogeneous composite ZnS/SnS2 is designed to meet various requirements for alkali metal-ion batteries. The composite is prepared using an electrostatic spinning method and encapsulated in N-doped carbon fibers after high-temperature vulcanization. The special structure of the composite provides a dependable interconnection and fast conductive network for alkali metal ions. The conductive carbon network shortens the diffusion path and greatly improves the migration efficiency of the alkali metal ions in the electrode. As expected, when the current density is 0.1 A g–1, the ZnS/SnS2@NCNFs maintain a high discharge capacity of more than 1437.5, 1321.2, and 861.6 mA h g–1 for lithium-ion, sodium-ion, and potassium-ion batteries, respectively. What is more, a full cell using a prelithiated composite anode and a LiFePO4 cathode is tested and shows excellent electrochemical performance. This work provides new perspectives for the development of novel anodes that can efficiently store alkali metal ions, as well as for the fine-structure design of materials

    Table_1_Strawberry Vein Banding Virus Movement Protein P1 Interacts With Light-Harvesting Complex II Type 1 Like of Fragaria vesca to Promote Viral Infection.DOCX

    No full text
    Chlorophyll a/b-binding protein of light-harvesting complex II type 1 like (LHC II-1L) is an essential component of photosynthesis, which mainly maintains the stability of the electron transport chain. However, how the LHC II-1L protein of Fragaria vesca (FvLHC II-1L) affects viral infection remains unclear. In this study, we demonstrated that the movement protein P1 of strawberry vein banding virus (SVBV P1) interacted with FvLHC II-1L in vivo and in vitro by bimolecular fluorescence complementation and pull-down assays. SVBV P1 was co-localized with FvLHC II-1L at the edge of epidermal cells of Nicotiana benthamiana leaves, and FvLHC II-1L protein expression was upregulated in SVBV-infected F. vesca. We also found that FvLHC II-1L effectively promoted SVBV P1 to compensate for the intercellular movement of movement-deficient potato virus X (PVXΔP25) and the systemic movement of movement-deficient cucumber mosaic virus (CMVΔMP). Transient overexpression of FvLHC II-1L and inoculation of an infectious clone of SVBV showed that the course of SVBV infection in F. vesca was accelerated. Collectively, the results showed that SVBV P1 protein can interact with FvLHC II-1L protein, which in turn promotes F. vesca infection by SVBV.</p

    Image_11_Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy.TIF

    No full text
    Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.</p

    Image_1_Strawberry Vein Banding Virus Movement Protein P1 Interacts With Light-Harvesting Complex II Type 1 Like of Fragaria vesca to Promote Viral Infection.JPEG

    No full text
    Chlorophyll a/b-binding protein of light-harvesting complex II type 1 like (LHC II-1L) is an essential component of photosynthesis, which mainly maintains the stability of the electron transport chain. However, how the LHC II-1L protein of Fragaria vesca (FvLHC II-1L) affects viral infection remains unclear. In this study, we demonstrated that the movement protein P1 of strawberry vein banding virus (SVBV P1) interacted with FvLHC II-1L in vivo and in vitro by bimolecular fluorescence complementation and pull-down assays. SVBV P1 was co-localized with FvLHC II-1L at the edge of epidermal cells of Nicotiana benthamiana leaves, and FvLHC II-1L protein expression was upregulated in SVBV-infected F. vesca. We also found that FvLHC II-1L effectively promoted SVBV P1 to compensate for the intercellular movement of movement-deficient potato virus X (PVXΔP25) and the systemic movement of movement-deficient cucumber mosaic virus (CMVΔMP). Transient overexpression of FvLHC II-1L and inoculation of an infectious clone of SVBV showed that the course of SVBV infection in F. vesca was accelerated. Collectively, the results showed that SVBV P1 protein can interact with FvLHC II-1L protein, which in turn promotes F. vesca infection by SVBV.</p

    Image_2_Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy.TIF

    No full text
    Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.</p

    Image_10_Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy.TIF

    No full text
    Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.</p

    Image_9_Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy.TIF

    No full text
    Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.</p

    Image_4_Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy.TIF

    No full text
    Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.</p
    corecore